A novel sparrow search algorithm based co-correlation graph construction strategy for wind turbine group anomaly identification via graph attention networks
Xiaomin Wang, Xiao Zhuang, Di Zhou, Jian Ge, Jiawei Xiang
{"title":"A novel sparrow search algorithm based co-correlation graph construction strategy for wind turbine group anomaly identification via graph attention networks","authors":"Xiaomin Wang, Xiao Zhuang, Di Zhou, Jian Ge, Jiawei Xiang","doi":"10.1016/j.ress.2025.110998","DOIUrl":null,"url":null,"abstract":"<div><div>Anomaly identification by using Supervisory Control and Data Acquisition (SCADA) data is an important means to improve the reliability of wind turbine group (WTG) operation. However, due to the low reliability of SCADA systems, anomalies in the data itself may occur as a result of sensor failures or data transmission errors. The anomalies in the data itself will reduce the accuracy and reliability of WTG anomaly identification. In this paper, a sparrow search algorithm (SSA) based co-correlation graph (CG) construction strategy using graph attention networks (SSACG-GAT) is proposed for WTG anomaly identification. First, the adjacency matrix representing the correlation of sample parameters is constructed by taking the monitoring parameters as nodes and the correlation between parameters as edges. Second, the proposed SSAGC strategy is used to obtain a co-correlation graph by fusing the adjacency matrices calculated by different correlation analysis models. In the proposed SSAGC strategy, the SSA is used to obtain the optimal fusion weights of the different adjacency matrices. Finally, the obtained optimal co-correlation graph is input into the GAT network for WTG anomaly identification. Nine models are selected as benchmarks to validate the effectiveness and superiority of the proposed SSACG-GAT. The experimental results show that the proposed SSACG-GAT has the best identification performance compared with nine benchmark methods. In addition, the ablation experiment results also demonstrate that the proposed SSACG strategy can effectively improve the accuracy and reliability of WTG anomaly identification.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"260 ","pages":"Article 110998"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025001991","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Anomaly identification by using Supervisory Control and Data Acquisition (SCADA) data is an important means to improve the reliability of wind turbine group (WTG) operation. However, due to the low reliability of SCADA systems, anomalies in the data itself may occur as a result of sensor failures or data transmission errors. The anomalies in the data itself will reduce the accuracy and reliability of WTG anomaly identification. In this paper, a sparrow search algorithm (SSA) based co-correlation graph (CG) construction strategy using graph attention networks (SSACG-GAT) is proposed for WTG anomaly identification. First, the adjacency matrix representing the correlation of sample parameters is constructed by taking the monitoring parameters as nodes and the correlation between parameters as edges. Second, the proposed SSAGC strategy is used to obtain a co-correlation graph by fusing the adjacency matrices calculated by different correlation analysis models. In the proposed SSAGC strategy, the SSA is used to obtain the optimal fusion weights of the different adjacency matrices. Finally, the obtained optimal co-correlation graph is input into the GAT network for WTG anomaly identification. Nine models are selected as benchmarks to validate the effectiveness and superiority of the proposed SSACG-GAT. The experimental results show that the proposed SSACG-GAT has the best identification performance compared with nine benchmark methods. In addition, the ablation experiment results also demonstrate that the proposed SSACG strategy can effectively improve the accuracy and reliability of WTG anomaly identification.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.