{"title":"On the influence of the porosity and homogeneity of sintered die-attach layers on the power cycling performance","authors":"L. Mikutta, F. Otto, J. Schadewald","doi":"10.1016/j.microrel.2025.115691","DOIUrl":null,"url":null,"abstract":"<div><div>Silver sintering is the state-of-the-art technology for highly reliable chip - substrate interconnects. The power cycling reliability, however, strongly depends on the thermal and mechanical properties of the sintered bond line, both of which are governed by the magnitude and the homogeneity of the porosity in the sintered layer. This dependency is investigated and discussed in this paper. Power cycling tests were performed on sintered samples having different porosities and/or porosity distributions after which the samples were subjected to failure analysis. It is concluded that - within the tested ranges - the sinter layer porosity and its distribution is not limiting the power cycling capability.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"168 ","pages":"Article 115691"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425001040","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Silver sintering is the state-of-the-art technology for highly reliable chip - substrate interconnects. The power cycling reliability, however, strongly depends on the thermal and mechanical properties of the sintered bond line, both of which are governed by the magnitude and the homogeneity of the porosity in the sintered layer. This dependency is investigated and discussed in this paper. Power cycling tests were performed on sintered samples having different porosities and/or porosity distributions after which the samples were subjected to failure analysis. It is concluded that - within the tested ranges - the sinter layer porosity and its distribution is not limiting the power cycling capability.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.