Informative Path Planning for Active Regression With Gaussian Processes via Sparse Optimization

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Shamak Dutta;Nils Wilde;Stephen L. Smith
{"title":"Informative Path Planning for Active Regression With Gaussian Processes via Sparse Optimization","authors":"Shamak Dutta;Nils Wilde;Stephen L. Smith","doi":"10.1109/TRO.2025.3548865","DOIUrl":null,"url":null,"abstract":"We study informative path planning for active regression in Gaussian Processes (GP). Here, a resource constrained robot team collects measurements of an unknown function, assumed to be a sample from a GP, with the goal of minimizing the trace of the <inline-formula><tex-math>$M$</tex-math></inline-formula>-weighted expected squared estimation error covariance (where <inline-formula><tex-math>$M$</tex-math></inline-formula> is a positive semidefinite matrix) resulting from the GP posterior mean. While greedy heuristics are a popular solution in the case of length constrained paths, it remains a challenge to compute <italic>optimal</i> solutions in the discrete setting subject to routing constraints. We show that this challenge is surprisingly easy to circumvent. Using the optimality of the posterior mean for a class of functions of the squared loss yields an exact formulation as a mixed integer program. We demonstrate that this approach finds optimal solutions in a variety of settings in seconds and when terminated early, it finds sub-optimal solutions of higher quality than existing heuristics.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2184-2199"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10916979/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study informative path planning for active regression in Gaussian Processes (GP). Here, a resource constrained robot team collects measurements of an unknown function, assumed to be a sample from a GP, with the goal of minimizing the trace of the $M$-weighted expected squared estimation error covariance (where $M$ is a positive semidefinite matrix) resulting from the GP posterior mean. While greedy heuristics are a popular solution in the case of length constrained paths, it remains a challenge to compute optimal solutions in the discrete setting subject to routing constraints. We show that this challenge is surprisingly easy to circumvent. Using the optimality of the posterior mean for a class of functions of the squared loss yields an exact formulation as a mixed integer program. We demonstrate that this approach finds optimal solutions in a variety of settings in seconds and when terminated early, it finds sub-optimal solutions of higher quality than existing heuristics.
基于稀疏优化的高斯过程主动回归信息路径规划
研究高斯过程(GP)中主动回归的信息路径规划。在这里,资源受限的机器人团队收集未知函数的测量值,假设是GP的样本,其目标是最小化由GP后验均值产生的加权期望平方估计误差协方差(其中$M$是一个正半定矩阵)的轨迹。虽然贪婪启发式算法是长度受限路径的一种流行解决方案,但在受路由约束的离散设置中计算最优解仍然是一个挑战。我们表明,这个挑战非常容易规避。利用后验均值的最优性对一类函数的平方损失得到一个精确的公式作为一个混合整数程序。我们证明,这种方法可以在几秒钟内找到各种设置下的最优解,并且当提前终止时,它可以找到比现有启发式更高质量的次最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信