{"title":"Catalytic remodeling of complex alkenes to oxonitriles through C=C double bond deconstruction.","authors":"Zengrui Cheng, Kaimeng Huang, Chen Wang, Lili Chen, Xinyao Li, Zhibin Hu, Xinyuan Shan, Peng-Fei Cao, Haofeng Sun, Wei Chen, Chenhao Li, Ziyao Zhang, Hui Tan, Xue Jiang, Guikai Zhang, Zhongying Zhang, Min Lin, Liang Wang, Anmin Zheng, Changjiu Xia, Teng Wang, Song Song, Xingtian Shu, Ning Jiao","doi":"10.1126/science.adq8918","DOIUrl":null,"url":null,"abstract":"<p><p>Deconstructive transformation of carbon-carbon double bonds (C=C) is a pivotal strategy in synthetic chemistry and drug discovery. Despite the substantial advances in olefin metathesis and ozonolysis for natural product synthesis through C=C double-bond cleavage, the catalytic remodeling of complex molecules through C=C double-bond deconstruction has been underdeveloped. We report a heterogeneous copper-catalyzed C=C double-bond cleavage, which enables the remodeling of complex molecules by converting the carbons on either side of the C=C double bond to carbonyl and cyano groups, respectively. In particular, this method provides an efficient protocol to conveniently transform terpenoids, glycals, steroids, and bioactive molecules to privileged scaffolds with underexplored chemical space.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6738","pages":"1083-1090"},"PeriodicalIF":44.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adq8918","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Deconstructive transformation of carbon-carbon double bonds (C=C) is a pivotal strategy in synthetic chemistry and drug discovery. Despite the substantial advances in olefin metathesis and ozonolysis for natural product synthesis through C=C double-bond cleavage, the catalytic remodeling of complex molecules through C=C double-bond deconstruction has been underdeveloped. We report a heterogeneous copper-catalyzed C=C double-bond cleavage, which enables the remodeling of complex molecules by converting the carbons on either side of the C=C double bond to carbonyl and cyano groups, respectively. In particular, this method provides an efficient protocol to conveniently transform terpenoids, glycals, steroids, and bioactive molecules to privileged scaffolds with underexplored chemical space.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.