Brian Premchand , Kyaw Kyar Toe , Chuanchu Wang , Kai Rui Wan , Thevapriya Selvaratnam , Valerie Ethans Toh , Wai Hoe Ng , Camilo Libedinsky , Weiguo Chen , Ruiqi Lim , Ming-Yuan Cheng , Yuan Gao , Kai Keng Ang , Rosa Qi Yue So
{"title":"Comparing a BCI communication system in a patient with Multiple System Atrophy, with an animal model","authors":"Brian Premchand , Kyaw Kyar Toe , Chuanchu Wang , Kai Rui Wan , Thevapriya Selvaratnam , Valerie Ethans Toh , Wai Hoe Ng , Camilo Libedinsky , Weiguo Chen , Ruiqi Lim , Ming-Yuan Cheng , Yuan Gao , Kai Keng Ang , Rosa Qi Yue So","doi":"10.1016/j.brainresbull.2025.111289","DOIUrl":null,"url":null,"abstract":"<div><div>Paralysis affects many people worldwide, and the people affected often suffer from impaired communication. We developed a microelectrode-based Brain-Computer Interface (BCI) for enabling communication in patients affected by paralysis, and implanted it in a patient with Multiple System Atrophy (MSA), a neurodegenerative disease that causes widespread neural symptoms including paralysis. To verify the effectiveness of the BCI system, it was also tested by implanting it in a non-human primate (NHP). Data from the human and NHP were used to train binary classifiers two different types of machine learning models: a Linear Discriminant Analysis (LDA) model, and a Long Short-Term Memory (LSTM)-based Artificial Neural Network (ANN). The LDA model performed at up to 72.7 % accuracy for binary decoding in the human patient, however, performance was highly variable and was much lower on most recording days. The BCI system was able to accurately decode movement vs non-movement in the NHP (accuracy using LDA: 82.7 ± 3.3 %, LSTM: 83.7 ± 2.2 %, 95 % confidence intervals), however it was not able to with recordings from the human patient (accuracy using LDA: 47.0 ± 5.1 %, LSTM: 44.6 ± 9.9 %, 95 % confidence intervals). We discuss how neurodegenerative diseases such as MSA can impede BCI-based communication, and postulate on the mechanisms by which this may occur.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"223 ","pages":"Article 111289"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025001017","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Paralysis affects many people worldwide, and the people affected often suffer from impaired communication. We developed a microelectrode-based Brain-Computer Interface (BCI) for enabling communication in patients affected by paralysis, and implanted it in a patient with Multiple System Atrophy (MSA), a neurodegenerative disease that causes widespread neural symptoms including paralysis. To verify the effectiveness of the BCI system, it was also tested by implanting it in a non-human primate (NHP). Data from the human and NHP were used to train binary classifiers two different types of machine learning models: a Linear Discriminant Analysis (LDA) model, and a Long Short-Term Memory (LSTM)-based Artificial Neural Network (ANN). The LDA model performed at up to 72.7 % accuracy for binary decoding in the human patient, however, performance was highly variable and was much lower on most recording days. The BCI system was able to accurately decode movement vs non-movement in the NHP (accuracy using LDA: 82.7 ± 3.3 %, LSTM: 83.7 ± 2.2 %, 95 % confidence intervals), however it was not able to with recordings from the human patient (accuracy using LDA: 47.0 ± 5.1 %, LSTM: 44.6 ± 9.9 %, 95 % confidence intervals). We discuss how neurodegenerative diseases such as MSA can impede BCI-based communication, and postulate on the mechanisms by which this may occur.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.