{"title":"The coupling of carbon non-stoichiometry and short-range order in governing mechanical properties of high-entropy ceramics","authors":"Wenyu Lu, Jingru Xu, Shasha Huang, Xuepeng Xiang, Haijun Fu, Xinlei Gu, Baichuan Xu, Ailin Yang, Zhenggang Wu, Shijun Zhao","doi":"10.1038/s41524-025-01551-3","DOIUrl":null,"url":null,"abstract":"<p>High-entropy carbide ceramics (HECCs) commonly exhibit non-stoichiometric compositions and short-range order (SRO) arising from diverse elemental mixing. In this study, taking (TiZrHfNb)C as a representative HECC, we explore the coupling effects of SRO and carbon non-stoichiometry based on density-functional theory (DFT) and machine learning (ML). DFT results indicate that carbon non-stoichiometry is favored in Ti and Nb environments due to enhanced local atomic relaxation and charge transfer, which contribute to improved <i>d-d</i> bonding interactions. DFT-based Monte Carlo (MC) simulations further reveal a clustering tendency of Ti and Nb elements that compete with carbon non-stoichiometry formation. These local features are effectively captured by ML models, enabling rapid assessment of the interplay among carbon deficiency, SRO, and their influences on the mechanical properties of HECCs. This work elucidates the microscopic local properties responsible for the macroscopic behavior, offering key insights for designing HECCs through careful element selection and local chemistry control.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"37 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01551-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy carbide ceramics (HECCs) commonly exhibit non-stoichiometric compositions and short-range order (SRO) arising from diverse elemental mixing. In this study, taking (TiZrHfNb)C as a representative HECC, we explore the coupling effects of SRO and carbon non-stoichiometry based on density-functional theory (DFT) and machine learning (ML). DFT results indicate that carbon non-stoichiometry is favored in Ti and Nb environments due to enhanced local atomic relaxation and charge transfer, which contribute to improved d-d bonding interactions. DFT-based Monte Carlo (MC) simulations further reveal a clustering tendency of Ti and Nb elements that compete with carbon non-stoichiometry formation. These local features are effectively captured by ML models, enabling rapid assessment of the interplay among carbon deficiency, SRO, and their influences on the mechanical properties of HECCs. This work elucidates the microscopic local properties responsible for the macroscopic behavior, offering key insights for designing HECCs through careful element selection and local chemistry control.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.