Effects of Surface Charge of Amphiphilic Peptides on Peptide–Lipid Interactions in the Gas Phase and in Solution

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Til Kundlacz, Christian Schwieger, Carla Schmidt
{"title":"Effects of Surface Charge of Amphiphilic Peptides on Peptide–Lipid Interactions in the Gas Phase and in Solution","authors":"Til Kundlacz, Christian Schwieger, Carla Schmidt","doi":"10.1021/acs.analchem.5c00283","DOIUrl":null,"url":null,"abstract":"The interactions between peptides and lipids are fundamental for many biological processes. Therefore, exploring the noncovalent interactions that govern these interactions has become increasingly important. Native mass spectrometry is a valuable technique for the characterization of specific peptide–lipid interactions. However, native mass spectrometry requires the transfer of the analyte into the gas phase, and noncovalent interactions driven by the hydrophobic effect might be distorted. We, therefore, address the importance of electrostatic interactions for the formation of peptide–lipid interactions. For this, we make use of the amphipathic, antimicrobial peptide LL-37 as well as a positively and a negatively charged variant thereof and study binding of a variety of lipids by native mass spectrometry. We found that the surface charge of the peptides affects the transfer of stable peptide–lipid complexes into the gas phase and that the ionization mode is important to observe these interactions. We further compare our findings observed in the gas phase with interactions formed in solution between the peptides and lipid monolayers using a Langmuir film balance. The two approaches deliver comparable results and reveal a clear trend in the lipid preferences of all variants for those lipids with opposite charge. Notably, the unmodified wild-type peptide was more flexible in the formation of peptide–lipid interactions. We conclude that native mass spectrometry is indeed well-suited to explore the interactions between peptides and lipids and that electrostatic interactions as expressed by the surface charge of the peptides play an important role in the formation and stabilization of peptide–lipid interactions.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"7 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00283","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The interactions between peptides and lipids are fundamental for many biological processes. Therefore, exploring the noncovalent interactions that govern these interactions has become increasingly important. Native mass spectrometry is a valuable technique for the characterization of specific peptide–lipid interactions. However, native mass spectrometry requires the transfer of the analyte into the gas phase, and noncovalent interactions driven by the hydrophobic effect might be distorted. We, therefore, address the importance of electrostatic interactions for the formation of peptide–lipid interactions. For this, we make use of the amphipathic, antimicrobial peptide LL-37 as well as a positively and a negatively charged variant thereof and study binding of a variety of lipids by native mass spectrometry. We found that the surface charge of the peptides affects the transfer of stable peptide–lipid complexes into the gas phase and that the ionization mode is important to observe these interactions. We further compare our findings observed in the gas phase with interactions formed in solution between the peptides and lipid monolayers using a Langmuir film balance. The two approaches deliver comparable results and reveal a clear trend in the lipid preferences of all variants for those lipids with opposite charge. Notably, the unmodified wild-type peptide was more flexible in the formation of peptide–lipid interactions. We conclude that native mass spectrometry is indeed well-suited to explore the interactions between peptides and lipids and that electrostatic interactions as expressed by the surface charge of the peptides play an important role in the formation and stabilization of peptide–lipid interactions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信