Florian Frenzel, Saskia Fiedler, Ahmad Bardan, Arne Güttler, Christian Würth, Ute Resch-Genger
{"title":"Influence of Measurement Geometry and Blank on Absolute Measurements of Photoluminescence Quantum Yields of Scattering Luminescent Films","authors":"Florian Frenzel, Saskia Fiedler, Ahmad Bardan, Arne Güttler, Christian Würth, Ute Resch-Genger","doi":"10.1021/acs.analchem.4c06726","DOIUrl":null,"url":null,"abstract":"For a series of 500 μm-thick polyurethane films containing different concentrations of luminescent and scattering YAG:Ce microparticles, we systematically explored and quantified pitfalls of absolute measurements of photoluminescence quantum yields (Φ<sub>f</sub>) for often employed integrating sphere (IS) geometries, where the sample is placed either on a sample holder at the bottom of the IS surface or mounted in the IS center. Thereby, the influence of detection and illumination geometry and sample position was examined using blanks with various scattering properties for measuring the number of photons absorbed by the sample. Our results reveal that (i) setup configurations where the scattering sample is mounted in the IS center and (ii) transparent blanks can introduce systematic errors in absolute Φ<sub>f</sub> measurements. For strongly scattering, luminescent samples, this can result in either an under- or overestimation of the absorbed photon flux and hence an under- or overestimation of Φ<sub>f</sub>. The size of these uncertainties depends on the scattering properties of the sample and instrument parameters, such as sample position, IS size, wavelength-dependent reflectivity of the IS surface coating, and port configuration. For accurate and reliable absolute Φ<sub>f</sub> measurements, we recommend (i) a blank with scattering properties closely matching those of the sample to realize similar distributions of the diffusely scattered excitation photons within the IS, and (ii) a sufficiently high sample absorption at the excitation wavelength. For IS setups with center-mounted samples, measurement geometries should be utilized that prevent the loss of excitation photons by reflections from the sample out of the IS.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"37 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06726","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For a series of 500 μm-thick polyurethane films containing different concentrations of luminescent and scattering YAG:Ce microparticles, we systematically explored and quantified pitfalls of absolute measurements of photoluminescence quantum yields (Φf) for often employed integrating sphere (IS) geometries, where the sample is placed either on a sample holder at the bottom of the IS surface or mounted in the IS center. Thereby, the influence of detection and illumination geometry and sample position was examined using blanks with various scattering properties for measuring the number of photons absorbed by the sample. Our results reveal that (i) setup configurations where the scattering sample is mounted in the IS center and (ii) transparent blanks can introduce systematic errors in absolute Φf measurements. For strongly scattering, luminescent samples, this can result in either an under- or overestimation of the absorbed photon flux and hence an under- or overestimation of Φf. The size of these uncertainties depends on the scattering properties of the sample and instrument parameters, such as sample position, IS size, wavelength-dependent reflectivity of the IS surface coating, and port configuration. For accurate and reliable absolute Φf measurements, we recommend (i) a blank with scattering properties closely matching those of the sample to realize similar distributions of the diffusely scattered excitation photons within the IS, and (ii) a sufficiently high sample absorption at the excitation wavelength. For IS setups with center-mounted samples, measurement geometries should be utilized that prevent the loss of excitation photons by reflections from the sample out of the IS.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.