Machine learning-assisted aroma profile prediction in Jiang-flavor baijiu

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Min Zhu, Mingyao Wang, Junfeng Gu, Zhao Deng, Wenxue Zhang, Zhengfu Pan, Guorong Luo, Renfu Wu, Jianliang Qin, Katsuya Gomi
{"title":"Machine learning-assisted aroma profile prediction in Jiang-flavor baijiu","authors":"Min Zhu, Mingyao Wang, Junfeng Gu, Zhao Deng, Wenxue Zhang, Zhengfu Pan, Guorong Luo, Renfu Wu, Jianliang Qin, Katsuya Gomi","doi":"10.1016/j.foodchem.2025.143661","DOIUrl":null,"url":null,"abstract":"The complex flavor of Jiang-flavor <em>Baijiu</em> (JFB) arises from the interaction of hundreds of compounds at both physicochemical and sensory levels, making accurate perception challenging. Modern machine learning techniques offer precise and scientific approaches for predicting sensory attributes. This study applied flavoromics and sensory profiling to 27 representative JFB samples from main regions in China, integrating five machine learning algorithms to establish a novel strategy for predicting global aroma characteristics. The results indicate that the neural network (NN) model outperformed others, effectively capturing the intricate interactions among flavor compounds. Model dissection identified 18 chemical parameters potentially influencing the overall aroma profile. The importance of these factors was further validated through spiking and omission tests, which notably enhanced the sensory experience of commercial liquor. This study demonstrates the potential of machine learning in JFB flavor research and offers valuable insights into the mechanisms underlying its flavor formation.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"35 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143661","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The complex flavor of Jiang-flavor Baijiu (JFB) arises from the interaction of hundreds of compounds at both physicochemical and sensory levels, making accurate perception challenging. Modern machine learning techniques offer precise and scientific approaches for predicting sensory attributes. This study applied flavoromics and sensory profiling to 27 representative JFB samples from main regions in China, integrating five machine learning algorithms to establish a novel strategy for predicting global aroma characteristics. The results indicate that the neural network (NN) model outperformed others, effectively capturing the intricate interactions among flavor compounds. Model dissection identified 18 chemical parameters potentially influencing the overall aroma profile. The importance of these factors was further validated through spiking and omission tests, which notably enhanced the sensory experience of commercial liquor. This study demonstrates the potential of machine learning in JFB flavor research and offers valuable insights into the mechanisms underlying its flavor formation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信