Rapid detection of the viability of naturally aged maize seeds using multimodal data fusion and explainable deep learning techniques

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
He Li, Yilin Mao, Yanan Xu, Keling Tu, Han Zhang, Riliang Gu, Qun Sun
{"title":"Rapid detection of the viability of naturally aged maize seeds using multimodal data fusion and explainable deep learning techniques","authors":"He Li, Yilin Mao, Yanan Xu, Keling Tu, Han Zhang, Riliang Gu, Qun Sun","doi":"10.1016/j.foodchem.2025.143692","DOIUrl":null,"url":null,"abstract":"Seed viability, a key indicator for quality assessment, directly impacts the emergence of field seedlings. The existing nondestructive testing model for maize seed vitality based on naturally aged seeds and predominantly relying on single-modal data like MV and RS, achieves an accuracy of less than 70 %. To elucidate the influence of different data on model accuracy, this study proposes the MSCNSVN model for detecting seed viability by collecting multisensor information from maize seeds using sensors, such as MV, RS, TS, FS, and SS. Our findings indicated that (1) the single-modal FS dataset achieved optimal prediction accuracy, with FS570/600 contributing the most; (2) multimodal data fusion outperformed single-modal data, with an accuracy improvement of 10 %, while the MV + RS + FS dataset achieved the highest accuracy; (3) the MSCNSVN model demonstrated superior performance compared to baseline models; (4) modeling with dual-variety datasets and endosperm surface datasets improved accuracy by 2 %–3 %.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"53 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143692","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Seed viability, a key indicator for quality assessment, directly impacts the emergence of field seedlings. The existing nondestructive testing model for maize seed vitality based on naturally aged seeds and predominantly relying on single-modal data like MV and RS, achieves an accuracy of less than 70 %. To elucidate the influence of different data on model accuracy, this study proposes the MSCNSVN model for detecting seed viability by collecting multisensor information from maize seeds using sensors, such as MV, RS, TS, FS, and SS. Our findings indicated that (1) the single-modal FS dataset achieved optimal prediction accuracy, with FS570/600 contributing the most; (2) multimodal data fusion outperformed single-modal data, with an accuracy improvement of 10 %, while the MV + RS + FS dataset achieved the highest accuracy; (3) the MSCNSVN model demonstrated superior performance compared to baseline models; (4) modeling with dual-variety datasets and endosperm surface datasets improved accuracy by 2 %–3 %.

Abstract Image

种子活力是质量评估的关键指标,直接影响田间出苗率。现有的玉米种子活力无损检测模型以自然老化的种子为基础,主要依赖于 MV 和 RS 等单模态数据,准确率低于 70%。为了阐明不同数据对模型准确性的影响,本研究提出了 MSCNSVN 模型,通过使用 MV、RS、TS、FS 和 SS 等传感器收集玉米种子的多传感器信息来检测种子活力。我们的研究结果表明:(1)单模态 FS 数据集实现了最佳预测准确度,其中 FS570/600 的贡献最大;(2)多模态数据融合优于单模态数据,准确度提高了 10%,而 MV + RS + FS 数据集实现了最高准确度;(3)与基线模型相比,MSCNSVN 模型表现出更优越的性能;(4)使用双变量数据集和胚乳表面数据集建模,准确度提高了 2 %-3 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信