Determination of hordenine in beer samples and bodybuilding supplement at the electrified liquid-liquid interface

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED
Konrad Rudnicki, Emilia Powałka, Karolina Marciniak, Mohammad Rizwan, Paweł Stelmaszczyk, Renata Wietecha-Posłuszny, Lukasz Poltorak
{"title":"Determination of hordenine in beer samples and bodybuilding supplement at the electrified liquid-liquid interface","authors":"Konrad Rudnicki, Emilia Powałka, Karolina Marciniak, Mohammad Rizwan, Paweł Stelmaszczyk, Renata Wietecha-Posłuszny, Lukasz Poltorak","doi":"10.1016/j.foodchem.2025.143734","DOIUrl":null,"url":null,"abstract":"This paper presents an electrochemical approach to quantitative and qualitative determination of hordenine (HODE) at the electrified liquid-liquid interface (eLLI). In this regard, we have employed ion transfer voltammetry (ITV) as an electroanalytical detection technique. The response of peak current values (positive or negative currents) increased linearly with HODE concentration in the studied concentration range from 28.49 to 1250 μM. Furthermore, the effect of pH (2−12) of the aqueous phase on recorded HODE signals was studied. Based on the obtained results a number of significant physicochemical parameters, such as the formal Galvani potential of the ion transfer reaction (<span><span style=\"\"><math><msubsup is=\"true\"><mo is=\"true\">∆</mo><mi is=\"true\" mathvariant=\"italic\">org</mi><mi is=\"true\" mathvariant=\"italic\">aq</mi></msubsup><msup is=\"true\"><mi is=\"true\">Φ</mi><mo is=\"true\">′</mo></msup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.894ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -896.2 2896 1246\" width=\"6.726ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,482)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-61\"></use><use transform=\"scale(0.707)\" x=\"529\" xlink:href=\"#MJMATHI-71\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(833,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6F\"></use><use transform=\"scale(0.707)\" x=\"485\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"937\" xlink:href=\"#MJMATHI-67\" y=\"0\"></use></g></g><g is=\"true\" transform=\"translate(1933,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3A6\"></use></g><g is=\"true\" transform=\"translate(667,362)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mo is=\"true\">∆</mo><mi mathvariant=\"italic\" is=\"true\">org</mi><mi mathvariant=\"italic\" is=\"true\">aq</mi></msubsup><msup is=\"true\"><mi is=\"true\">Φ</mi><mo is=\"true\">′</mo></msup></math></script></span>), diffusion coefficients (<em>D</em>), formal free Gibbs energy of the ion transfer reaction (<span><span style=\"\"><math><mo is=\"true\">∆</mo><msup is=\"true\"><mi is=\"true\">G</mi><mrow is=\"true\"><mo is=\"true\">′</mo><mi is=\"true\" mathvariant=\"italic\">aq</mi><mo is=\"true\">→</mo><mi is=\"true\" mathvariant=\"italic\">org</mi></mrow></msup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -945.9 4314.7 1047.3\" width=\"10.021ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-47\"></use></g><g is=\"true\" transform=\"translate(786,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJSSI-27\"></use></g><g is=\"true\" transform=\"translate(196,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-61\"></use><use transform=\"scale(0.707)\" x=\"529\" xlink:href=\"#MJMATHI-71\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(887,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2192\"></use></g><g is=\"true\" transform=\"translate(1594,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6F\"></use><use transform=\"scale(0.707)\" x=\"485\" xlink:href=\"#MJMATHI-72\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"937\" xlink:href=\"#MJMATHI-67\" y=\"0\"></use></g></g></g></g></svg></span><script type=\"math/mml\"><math><mo is=\"true\">∆</mo><msup is=\"true\"><mi is=\"true\">G</mi><mrow is=\"true\"><mo is=\"true\">′</mo><mi mathvariant=\"italic\" is=\"true\">aq</mi><mo is=\"true\">→</mo><mi mathvariant=\"italic\" is=\"true\">org</mi></mrow></msup></math></script></span>) and water-1,2-dichloroethane partition coefficient (<span><span style=\"\"><math><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"italic\">logP</mi><mi is=\"true\" mathvariant=\"italic\">DCE</mi><mo is=\"true\">′</mo></msubsup></math></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.894ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -896.2 3618 1246\" width=\"8.403ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6C\"></use><use x=\"298\" xlink:href=\"#MJMATHI-6F\" y=\"0\"></use><use x=\"784\" xlink:href=\"#MJMATHI-67\" y=\"0\"></use><use x=\"1261\" xlink:href=\"#MJMATHI-50\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(1904,422)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2032\"></use></g><g is=\"true\" transform=\"translate(1904,-248)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-44\"></use><use transform=\"scale(0.707)\" x=\"828\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1544\" xlink:href=\"#MJMATHI-45\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"italic\" is=\"true\">logP</mi><mi mathvariant=\"italic\" is=\"true\">DCE</mi><mo is=\"true\">′</mo></msubsup></math></script></span>) were determined. Finally, we have also showed that the elaborated method can be successfully used in the electroanalysis of complex matrixes, especially: beer and bodybuilding supplement samples.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"91 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143734","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an electrochemical approach to quantitative and qualitative determination of hordenine (HODE) at the electrified liquid-liquid interface (eLLI). In this regard, we have employed ion transfer voltammetry (ITV) as an electroanalytical detection technique. The response of peak current values (positive or negative currents) increased linearly with HODE concentration in the studied concentration range from 28.49 to 1250 μM. Furthermore, the effect of pH (2−12) of the aqueous phase on recorded HODE signals was studied. Based on the obtained results a number of significant physicochemical parameters, such as the formal Galvani potential of the ion transfer reaction (orgaqΦ), diffusion coefficients (D), formal free Gibbs energy of the ion transfer reaction (Gaqorg) and water-1,2-dichloroethane partition coefficient (logPDCE) were determined. Finally, we have also showed that the elaborated method can be successfully used in the electroanalysis of complex matrixes, especially: beer and bodybuilding supplement samples.

Abstract Image

本文介绍了一种在电化液-液界面(eLLI)上定量和定性测定大麦芽碱(HODE)的电化学方法。为此,我们采用了离子转移伏安法(ITV)作为电分析检测技术。在所研究的 28.49 至 1250 μM 浓度范围内,峰值电流(正或负电流)随 HODE 浓度的增加而线性增加。此外,还研究了水相的 pH 值(2-12)对记录的 HODE 信号的影响。根据所获得的结果,得出了一些重要的物理化学参数,如离子转移反应的形式伽伐尼电位(ΔorgaqΦ′ΔorgaqΦ′)、我们还测定了扩散系数(D)、离子转移反应的形式自由吉布斯能(∆G′aq→org∆G′aq→org)和水-1,2-二氯乙烷分配系数(logPDCE′logPDCE′)。最后,我们还证明了该方法可成功用于复杂基质的电分析,尤其是啤酒和健美补充剂样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信