Closed-Loop Navigation of a Kinetic Zone Diagram for Redox-Mediated Electrocatalysis Using Bayesian Optimization, a Digital Twin, and Automated Electrochemistry
Michael A. Pence, Gavin Hazen, Joaquín Rodríguez-López
{"title":"Closed-Loop Navigation of a Kinetic Zone Diagram for Redox-Mediated Electrocatalysis Using Bayesian Optimization, a Digital Twin, and Automated Electrochemistry","authors":"Michael A. Pence, Gavin Hazen, Joaquín Rodríguez-López","doi":"10.1021/acs.analchem.5c00099","DOIUrl":null,"url":null,"abstract":"Molecular electrocatalysis campaigns often require tuning multiple experimental parameters to obtain kinetically insightful electrochemical measurements, a prohibitively time-consuming task when performing comprehensive studies across multiple catalysts and substrates. In this work, we present an autonomous workflow that combines Bayesian optimization and automated electrochemistry to perform fully unsupervised cyclic voltammetry (CV) studies of molecular electrocatalysis. We developed CV descriptors that leveraged the conceptual framework of the EC′ (where EC′ denotes an electrochemical step followed by a catalytic chemical step) kinetic zone diagram to enable efficient Bayesian optimization. The CV descriptor’s effect on optimization performance was evaluated using a digital twin of our autonomous experimental platform, quantifying the accuracy of obtained kinetic values against the known ground truth. We demonstrated our platform experimentally by performing autonomous studies of TEMPO-catalyzed ethanol and isopropanol electro-oxidation, demonstrating rapid identification of kinetically insightful conditions in 10 or less iterations through the closed-loop workflow. Overall, this work highlights the application of autonomous electrochemical platforms to accelerate mechanistic studies in molecular electrocatalysis and beyond.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"212 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00099","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular electrocatalysis campaigns often require tuning multiple experimental parameters to obtain kinetically insightful electrochemical measurements, a prohibitively time-consuming task when performing comprehensive studies across multiple catalysts and substrates. In this work, we present an autonomous workflow that combines Bayesian optimization and automated electrochemistry to perform fully unsupervised cyclic voltammetry (CV) studies of molecular electrocatalysis. We developed CV descriptors that leveraged the conceptual framework of the EC′ (where EC′ denotes an electrochemical step followed by a catalytic chemical step) kinetic zone diagram to enable efficient Bayesian optimization. The CV descriptor’s effect on optimization performance was evaluated using a digital twin of our autonomous experimental platform, quantifying the accuracy of obtained kinetic values against the known ground truth. We demonstrated our platform experimentally by performing autonomous studies of TEMPO-catalyzed ethanol and isopropanol electro-oxidation, demonstrating rapid identification of kinetically insightful conditions in 10 or less iterations through the closed-loop workflow. Overall, this work highlights the application of autonomous electrochemical platforms to accelerate mechanistic studies in molecular electrocatalysis and beyond.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.