Low-symmetry polymorph of GaP upends bonding paradigms of metallic high-pressure III–V compounds

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Barbara Lavina , Enrique Zanardi , Andrés Mujica , Hyunchae Cynn , Yue Meng , Vitali Prakapenka , Jesse S. Smith
{"title":"Low-symmetry polymorph of GaP upends bonding paradigms of metallic high-pressure III–V compounds","authors":"Barbara Lavina ,&nbsp;Enrique Zanardi ,&nbsp;Andrés Mujica ,&nbsp;Hyunchae Cynn ,&nbsp;Yue Meng ,&nbsp;Vitali Prakapenka ,&nbsp;Jesse S. Smith","doi":"10.1016/j.mtphys.2025.101686","DOIUrl":null,"url":null,"abstract":"<div><div>The pressure-induced polymorphism of binary octet compounds has long been considered a settled problem although the possible atomic disordering of some phases remains a puzzling observation. Taking GaP as a case study, we conclude, through x-ray microdiffraction and first-principles calculations, that its high-pressure metallic phase (previously reported as being disordered) adopts in fact an ordered base-centered monoclinic structure previously unknown in this class of compounds. The formation of layered patterns with variable degrees of interlayer dimerization, as observed in GaP, marks a paradigm shift of our understanding of ordering in octet high-pressure phases which calls for a more extensive re-examination. A rich polymorphism with fine tuning of chemical and physical properties can be envisioned.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"53 ","pages":"Article 101686"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000422","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pressure-induced polymorphism of binary octet compounds has long been considered a settled problem although the possible atomic disordering of some phases remains a puzzling observation. Taking GaP as a case study, we conclude, through x-ray microdiffraction and first-principles calculations, that its high-pressure metallic phase (previously reported as being disordered) adopts in fact an ordered base-centered monoclinic structure previously unknown in this class of compounds. The formation of layered patterns with variable degrees of interlayer dimerization, as observed in GaP, marks a paradigm shift of our understanding of ordering in octet high-pressure phases which calls for a more extensive re-examination. A rich polymorphism with fine tuning of chemical and physical properties can be envisioned.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信