Glycerol esterification of free fatty acids catalyzed by zinc glycerolate for biodiesel production from acidified palm oil: Optimization, kinetic study, and process evaluation
Haotian Fei, Congwen Zheng, Zhenyu Wu, Xiaojiang Liang, Yong Nie
{"title":"Glycerol esterification of free fatty acids catalyzed by zinc glycerolate for biodiesel production from acidified palm oil: Optimization, kinetic study, and process evaluation","authors":"Haotian Fei, Congwen Zheng, Zhenyu Wu, Xiaojiang Liang, Yong Nie","doi":"10.1002/aocs.12916","DOIUrl":null,"url":null,"abstract":"<p>Biodiesel is an important alternative renewable liquid fuel due to its eco-friendly, non-toxic, and lower emissions. In this work, glycerol esterification catalyzed by zinc glycerolate was employed as a pretreatment to prepare biodiesel from acidified palm oil. The effects of stirring rate, catalyst amount, glycerol to free fatty acids (FFAs) molar ratio, and reaction temperature on the conversion of FFAs and concentration of monoglycerides, diglycerides, and triglycerides were investigated and optimized. The results show that the conversion of FFAs could reach 99.16% under the optimized conditions. Moreover, the kinetics of glycerol esterification catalyzed by zinc glycerolate at 160–200°C was obtained. Additionally, a comprehensive evaluation of the new biodiesel production process was also conducted. As a result, higher biodiesel content in the crude biodiesel phase was obtained after transesterification and separation using this new process. Overall, the study contributes to the utilization of waste oils to produce renewable energy and to minimize the waste management problem.</p>","PeriodicalId":17182,"journal":{"name":"Journal of the American Oil Chemists Society","volume":"102 3","pages":"641-655"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Oil Chemists Society","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aocs.12916","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Biodiesel is an important alternative renewable liquid fuel due to its eco-friendly, non-toxic, and lower emissions. In this work, glycerol esterification catalyzed by zinc glycerolate was employed as a pretreatment to prepare biodiesel from acidified palm oil. The effects of stirring rate, catalyst amount, glycerol to free fatty acids (FFAs) molar ratio, and reaction temperature on the conversion of FFAs and concentration of monoglycerides, diglycerides, and triglycerides were investigated and optimized. The results show that the conversion of FFAs could reach 99.16% under the optimized conditions. Moreover, the kinetics of glycerol esterification catalyzed by zinc glycerolate at 160–200°C was obtained. Additionally, a comprehensive evaluation of the new biodiesel production process was also conducted. As a result, higher biodiesel content in the crude biodiesel phase was obtained after transesterification and separation using this new process. Overall, the study contributes to the utilization of waste oils to produce renewable energy and to minimize the waste management problem.
期刊介绍:
The Journal of the American Oil Chemists’ Society (JAOCS) is an international peer-reviewed journal that publishes significant original scientific research and technological advances on fats, oils, oilseed proteins, and related materials through original research articles, invited reviews, short communications, and letters to the editor. We seek to publish reports that will significantly advance scientific understanding through hypothesis driven research, innovations, and important new information pertaining to analysis, properties, processing, products, and applications of these food and industrial resources. Breakthroughs in food science and technology, biotechnology (including genomics, biomechanisms, biocatalysis and bioprocessing), and industrial products and applications are particularly appropriate.
JAOCS also considers reports on the lipid composition of new, unique, and traditional sources of lipids that definitively address a research hypothesis and advances scientific understanding. However, the genus and species of the source must be verified by appropriate means of classification. In addition, the GPS location of the harvested materials and seed or vegetative samples should be deposited in an accredited germplasm repository. Compositional data suitable for Original Research Articles must embody replicated estimate of tissue constituents, such as oil, protein, carbohydrate, fatty acid, phospholipid, tocopherol, sterol, and carotenoid compositions. Other components unique to the specific plant or animal source may be reported. Furthermore, lipid composition papers should incorporate elements of yeartoyear, environmental, and/ or cultivar variations through use of appropriate statistical analyses.