Neural network–enabled accelerated discovery of multifunctional metamaterials for adaptive multispectral stealth applications

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wei Chen , Yuping Duan , Da Ma , Meng Wang , Shude Gu , Jiangyong Liu , Yupeng Shi , Yang Yang
{"title":"Neural network–enabled accelerated discovery of multifunctional metamaterials for adaptive multispectral stealth applications","authors":"Wei Chen ,&nbsp;Yuping Duan ,&nbsp;Da Ma ,&nbsp;Meng Wang ,&nbsp;Shude Gu ,&nbsp;Jiangyong Liu ,&nbsp;Yupeng Shi ,&nbsp;Yang Yang","doi":"10.1016/j.mtphys.2025.101696","DOIUrl":null,"url":null,"abstract":"<div><div>The development of advanced multispectral compatible stealth materials (CSMs) based on metamaterials faces significant challenges, including computational inefficiency, prohibitive costs, and the persistent issue of local optima in conventional design approaches. This study presents a transformative inverse design framework that revolutionizes the field by enabling rapid optimization within a quasi-infinite solution space. Departing from traditional low-dimensional design paradigms that are constrained by limited solution spaces and excessive reliance on manual intervention, our innovative approach introduces three key advancements: (1) a randomized cut-line coding methodology that generates an expansive, high-dimensional design space capable of addressing diverse stealth requirements; (2) a novel hybrid intelligence system combining genetic algorithms with neural networks for unprecedented computational efficiency and design flexibility; and (3) a multilayer architecture integrating conductive surface materials that achieves remarkable multispectral performance. The resulting CSMs, with a mere 1.24 mm thickness and 2.22 kg/m<sup>2</sup> surface density, demonstrate exceptional capabilities, including ultrabroadband antireflection (reflectivity &lt;0.1 across 8.9–18 GHz), dynamic multiband performance modulation (tunable within 6–18 GHz), radar cross-section reduction, and beam deflection - all programmable through customized fitness functions. Furthermore, the materials exhibit superior infrared stealth characteristics, achieving emissivity values as low as 0.3. This work establishes a new paradigm for the development of adaptive multispectral stealth materials, offering unprecedented versatility in diverse detection environments.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"52 ","pages":"Article 101696"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000525","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of advanced multispectral compatible stealth materials (CSMs) based on metamaterials faces significant challenges, including computational inefficiency, prohibitive costs, and the persistent issue of local optima in conventional design approaches. This study presents a transformative inverse design framework that revolutionizes the field by enabling rapid optimization within a quasi-infinite solution space. Departing from traditional low-dimensional design paradigms that are constrained by limited solution spaces and excessive reliance on manual intervention, our innovative approach introduces three key advancements: (1) a randomized cut-line coding methodology that generates an expansive, high-dimensional design space capable of addressing diverse stealth requirements; (2) a novel hybrid intelligence system combining genetic algorithms with neural networks for unprecedented computational efficiency and design flexibility; and (3) a multilayer architecture integrating conductive surface materials that achieves remarkable multispectral performance. The resulting CSMs, with a mere 1.24 mm thickness and 2.22 kg/m2 surface density, demonstrate exceptional capabilities, including ultrabroadband antireflection (reflectivity <0.1 across 8.9–18 GHz), dynamic multiband performance modulation (tunable within 6–18 GHz), radar cross-section reduction, and beam deflection - all programmable through customized fitness functions. Furthermore, the materials exhibit superior infrared stealth characteristics, achieving emissivity values as low as 0.3. This work establishes a new paradigm for the development of adaptive multispectral stealth materials, offering unprecedented versatility in diverse detection environments.

Abstract Image

Abstract Image

基于神经网络的自适应多光谱隐身应用多功能超材料的加速发现
基于超材料的先进多光谱兼容隐身材料(csm)的开发面临着重大挑战,包括计算效率低下、成本过高以及传统设计方法中持续存在的局部最优问题。本研究提出了一个变革性的逆设计框架,通过在准无限解空间内实现快速优化,彻底改变了该领域。传统的低维设计范式受到有限的解决方案空间和过度依赖人工干预的限制,我们的创新方法引入了三个关键的进步:(1)一种随机切割线编码方法,可以生成一个广阔的、高维的设计空间,能够满足不同的隐身要求;(2)结合遗传算法和神经网络的新型混合智能系统,具有前所未有的计算效率和设计灵活性;(3)集成导电表面材料的多层结构,实现了卓越的多光谱性能。由此产生的csm厚度仅为1.24 mm,表面密度为2.22 kg/m2,表现出卓越的性能,包括超宽带抗反射(反射率<;0.1 (8.9-18 GHz)、动态多频段性能调制(在6-18 GHz范围内可调)、雷达横截面减小和波束偏转——所有这些都可以通过定制的适应性功能进行编程。此外,该材料具有优异的红外隐身特性,发射率低至0.3。这项工作为自适应多光谱隐身材料的发展建立了一个新的范例,在不同的探测环境中提供了前所未有的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信