Baicalin Promotes Skeletal Muscle Fiber Remodeling by Activating the p38MAPK/PGC-1α Signaling Pathway

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Teng Wang, Xiaohui Sun, Yidi Zhang, Qingyan Wang, Wenhui Cheng, Yuhui Gao, Xin’e Shi, Jianjun Jin
{"title":"Baicalin Promotes Skeletal Muscle Fiber Remodeling by Activating the p38MAPK/PGC-1α Signaling Pathway","authors":"Teng Wang, Xiaohui Sun, Yidi Zhang, Qingyan Wang, Wenhui Cheng, Yuhui Gao, Xin’e Shi, Jianjun Jin","doi":"10.1021/acs.jafc.5c00300","DOIUrl":null,"url":null,"abstract":"Skeletal muscle is the major tissue for metabolic activity in the body and performs a variety of physiological functions. Among these, muscle fiber types are decisive in muscle function and meat quality. Numerous studies have shown that natural products can affect the development of skeletal muscle, regulate the formation of muscle fibers, and impact muscle function under physiological or pathological conditions. Baicalin, a natural flavonoid compound mainly derived from the dried roots of <i>Scutellaria baicalensis</i>, has been reported to affect glucose metabolism and insulin resistance in skeletal muscle. However, the role of baicalin in the conversion of skeletal muscle fiber types and its underlying mechanisms remain unclear. This study aimed to explore the effects of baicalin on skeletal muscle fiber conversion in vitro and in vivo. The in vitro experiment used C2C12 cells as a model, with a baicalin treatment concentration of 125 μM; the in vivo experiment used C57BL/6J mice and weaned piglets as the models. The results showed that baicalin could participate in the remodeling of skeletal muscle fibers, promoting the conversion from glycolytic fibers to oxidative fibers in mice and pigs. This was evidenced by increased protein and mRNA expression levels of genes related to oxidative fibers, upregulated SDH enzyme activity, and mitochondrial complex expression in vivo and in vitro, while the protein and mRNA expression levels of genes related to glycolytic fibers were decreased, and LDH enzyme activity was downregulated. Mechanistic studies revealed that baicalin, as a small molecule, could target and bind to the p38 MAPK protein, increase its expression and phosphorylation levels, and activate the p38 MAPK/PGC-1α signaling pathway. Collectively, these data showed that baicalin induced a shift in skeletal muscle fiber composition from glycolytic to oxidative myofibers by activating the p38 MAPK/PGC-1α signaling pathway, thereby affecting the meat quality.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"16 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c00300","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Skeletal muscle is the major tissue for metabolic activity in the body and performs a variety of physiological functions. Among these, muscle fiber types are decisive in muscle function and meat quality. Numerous studies have shown that natural products can affect the development of skeletal muscle, regulate the formation of muscle fibers, and impact muscle function under physiological or pathological conditions. Baicalin, a natural flavonoid compound mainly derived from the dried roots of Scutellaria baicalensis, has been reported to affect glucose metabolism and insulin resistance in skeletal muscle. However, the role of baicalin in the conversion of skeletal muscle fiber types and its underlying mechanisms remain unclear. This study aimed to explore the effects of baicalin on skeletal muscle fiber conversion in vitro and in vivo. The in vitro experiment used C2C12 cells as a model, with a baicalin treatment concentration of 125 μM; the in vivo experiment used C57BL/6J mice and weaned piglets as the models. The results showed that baicalin could participate in the remodeling of skeletal muscle fibers, promoting the conversion from glycolytic fibers to oxidative fibers in mice and pigs. This was evidenced by increased protein and mRNA expression levels of genes related to oxidative fibers, upregulated SDH enzyme activity, and mitochondrial complex expression in vivo and in vitro, while the protein and mRNA expression levels of genes related to glycolytic fibers were decreased, and LDH enzyme activity was downregulated. Mechanistic studies revealed that baicalin, as a small molecule, could target and bind to the p38 MAPK protein, increase its expression and phosphorylation levels, and activate the p38 MAPK/PGC-1α signaling pathway. Collectively, these data showed that baicalin induced a shift in skeletal muscle fiber composition from glycolytic to oxidative myofibers by activating the p38 MAPK/PGC-1α signaling pathway, thereby affecting the meat quality.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信