Luqi Dong, Xuanlin Zhang, Ziduo Yang, Lei Shen, Yunhao Lu
{"title":"Accurate piezoelectric tensor prediction with equivariant attention tensor graph neural network","authors":"Luqi Dong, Xuanlin Zhang, Ziduo Yang, Lei Shen, Yunhao Lu","doi":"10.1038/s41524-025-01546-0","DOIUrl":null,"url":null,"abstract":"<p>The piezoelectric materials enable the mutual conversion between mechanical and electrical energy, which drive a multi-billion dollar industry through their applications as sensors, actuators, and energy harvesters. The third-rank piezoelectric tensor is the core matrices for piezoelectric materials and their devices. However, the high costs of obtaining full piezoelectric tensor data through either experimental or computational methods make a significant challenge. Here, we propose an equivariant attention tensor graph neural network (EATGNN) that can identify crystal symmetry and remain independent of the reference frame, ultimately enabling the accurate prediction of the complete third-rank piezoelectric tensor. Especially, we perform an irreducible decomposition of the piezoelectric tensor into four irreducible representations to efficiently reserve the symmetry under group transformation operations. Our results further demonstrate that this model performs well in both bulk and two-dimensional materials. Finally, combining EATGNN with first-principles calculations, we discovered several potential high-performance piezoelectric materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"11 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01546-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The piezoelectric materials enable the mutual conversion between mechanical and electrical energy, which drive a multi-billion dollar industry through their applications as sensors, actuators, and energy harvesters. The third-rank piezoelectric tensor is the core matrices for piezoelectric materials and their devices. However, the high costs of obtaining full piezoelectric tensor data through either experimental or computational methods make a significant challenge. Here, we propose an equivariant attention tensor graph neural network (EATGNN) that can identify crystal symmetry and remain independent of the reference frame, ultimately enabling the accurate prediction of the complete third-rank piezoelectric tensor. Especially, we perform an irreducible decomposition of the piezoelectric tensor into four irreducible representations to efficiently reserve the symmetry under group transformation operations. Our results further demonstrate that this model performs well in both bulk and two-dimensional materials. Finally, combining EATGNN with first-principles calculations, we discovered several potential high-performance piezoelectric materials.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.