Optimal farm size reduces global poverty-induced soil antibiotic exposure risk

Fangkai Zhao, Yinshuai Li, Xingwu Duan, Haw Yen, Lei Yang, Yong Huang, Qingyu Feng, Long Sun, Shoujuan Li, Min Li, Liding Chen
{"title":"Optimal farm size reduces global poverty-induced soil antibiotic exposure risk","authors":"Fangkai Zhao, Yinshuai Li, Xingwu Duan, Haw Yen, Lei Yang, Yong Huang, Qingyu Feng, Long Sun, Shoujuan Li, Min Li, Liding Chen","doi":"10.1038/s43016-025-01131-0","DOIUrl":null,"url":null,"abstract":"<p>Farming activities contribute to soil antibiotic pollution, posing health risks for rural farm workers, especially on small farms in impoverished regions. The effectiveness of large farms in reducing poverty-induced soil antibiotic exposure risk (SABER) remains uncertain. Here we integrate global datasets on concentration of soil antibiotics, rural farm-worker employments and on-farm working hours to quantify SABER. We find that exposure-weighted relative populations are concentrated in underdeveloped regions, particularly East Africa and South and Southeast Asia. A 1,000 ha farm is optimal for SABER reduction, farm employment and working hours, outperforming both smaller and larger farms. Establishing large farms in the top 20% of priority areas can cover 47.3–75.5% of SABER hotspots, while establishing large farms in the top 44% of priority areas achieves the highest coverage of SABER hotspots without substantial declines in rural employment. This approach offers practical strategies to mitigate SABER while maintaining rural farm-worker employment.</p>","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-025-01131-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Farming activities contribute to soil antibiotic pollution, posing health risks for rural farm workers, especially on small farms in impoverished regions. The effectiveness of large farms in reducing poverty-induced soil antibiotic exposure risk (SABER) remains uncertain. Here we integrate global datasets on concentration of soil antibiotics, rural farm-worker employments and on-farm working hours to quantify SABER. We find that exposure-weighted relative populations are concentrated in underdeveloped regions, particularly East Africa and South and Southeast Asia. A 1,000 ha farm is optimal for SABER reduction, farm employment and working hours, outperforming both smaller and larger farms. Establishing large farms in the top 20% of priority areas can cover 47.3–75.5% of SABER hotspots, while establishing large farms in the top 44% of priority areas achieves the highest coverage of SABER hotspots without substantial declines in rural employment. This approach offers practical strategies to mitigate SABER while maintaining rural farm-worker employment.

Abstract Image

耕作活动会造成土壤抗生素污染,给农村农场工人的健康带来风险,尤其是在贫困地区的小型农场。大型农场在降低贫困导致的土壤抗生素暴露风险(SABER)方面的效果仍不确定。在此,我们整合了有关土壤抗生素浓度、农村农场工人就业情况和农场工作时间的全球数据集,以量化 SABER。我们发现,暴露加权的相对人口集中在欠发达地区,尤其是东非、南亚和东南亚。1,000 公顷的农场是减少 SABER、农场就业和工作时间的最佳选择,其表现优于小型和大型农场。在前 20% 的优先地区建立大型农场可覆盖 47.3%-75.5% 的 SABER 热点,而在前 44% 的优先地区建立大型农场可实现 SABER 热点的最高覆盖率,且不会导致农村就业大幅下降。这种方法提供了切实可行的战略,既能减轻 SABER 的影响,又能保持农村农民工的就业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信