Hierarchically porous coatings as durable radiative coolers with easy-cleaning property

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
A-Jun Chang , Chao-Hua Xue , Jiao-Jiao Sun , Meng-Xia Shen , Xiao-Jing Guo , Bing-Ying Liu , Meng-Chen Huang , Jing Li , Hong-Wei Wang
{"title":"Hierarchically porous coatings as durable radiative coolers with easy-cleaning property","authors":"A-Jun Chang ,&nbsp;Chao-Hua Xue ,&nbsp;Jiao-Jiao Sun ,&nbsp;Meng-Xia Shen ,&nbsp;Xiao-Jing Guo ,&nbsp;Bing-Ying Liu ,&nbsp;Meng-Chen Huang ,&nbsp;Jing Li ,&nbsp;Hong-Wei Wang","doi":"10.1016/j.mtphys.2025.101694","DOIUrl":null,"url":null,"abstract":"<div><div>Radiative cooling, as a sustainable and environmentally friendly cooling technology, holds promise for effectively addressing global energy challenges. However, the primary challenge to radiative cooling materials lies in achieving a balance between cooling capacity and application performances, including mechanical strength, durability, and nighttime insulation. In this study, we have successfully developed a hierarchically porous radiative cooling coating using the composite of thermoplastic polyurethane and hydrophobic silica through a scalable phase separation method. This cooling coating can be applied to various common materials in daily life such as polyester, glass, aluminum plates, wood, and paper products. When applied to polyester fabrics, the fabricated hierarchically porous radiative cooling coating (PRCC) demonstrates high solar reflectivity of 92 %, strong infrared emissivity of 95 % with low thermal conductivity of 0.015 W m<sup>−1</sup> K<sup>−1</sup>, and favorable mechanical properties with a strength of 21.8 MPa, easy-cleaning features, exceptional durability to UV aging and high-temperature exposure. Outdoor testing results showed that the PRCC achieved an average diurnal cooling of 13.4 °C while exhibiting an average nocturnal warming of 1.5 °C. Furthermore, the PRCC maintains outstanding cooling performance even after twelve months of outdoor exposure. This work is expected to promote the long-term application of radiative cooling materials in outdoor settings.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"53 ","pages":"Article 101694"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000501","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Radiative cooling, as a sustainable and environmentally friendly cooling technology, holds promise for effectively addressing global energy challenges. However, the primary challenge to radiative cooling materials lies in achieving a balance between cooling capacity and application performances, including mechanical strength, durability, and nighttime insulation. In this study, we have successfully developed a hierarchically porous radiative cooling coating using the composite of thermoplastic polyurethane and hydrophobic silica through a scalable phase separation method. This cooling coating can be applied to various common materials in daily life such as polyester, glass, aluminum plates, wood, and paper products. When applied to polyester fabrics, the fabricated hierarchically porous radiative cooling coating (PRCC) demonstrates high solar reflectivity of 92 %, strong infrared emissivity of 95 % with low thermal conductivity of 0.015 W m−1 K−1, and favorable mechanical properties with a strength of 21.8 MPa, easy-cleaning features, exceptional durability to UV aging and high-temperature exposure. Outdoor testing results showed that the PRCC achieved an average diurnal cooling of 13.4 °C while exhibiting an average nocturnal warming of 1.5 °C. Furthermore, the PRCC maintains outstanding cooling performance even after twelve months of outdoor exposure. This work is expected to promote the long-term application of radiative cooling materials in outdoor settings.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信