Accurate and efficient stock market index prediction: an integrated approach based on VMD-SNNs.

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2024-09-03 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2024.2395961
Xuchang Chen, Guoqiang Tang, Yumei Ren, Xin Lin, Tongzhi Li
{"title":"Accurate and efficient stock market index prediction: an integrated approach based on VMD-SNNs.","authors":"Xuchang Chen, Guoqiang Tang, Yumei Ren, Xin Lin, Tongzhi Li","doi":"10.1080/02664763.2024.2395961","DOIUrl":null,"url":null,"abstract":"<p><p>The stock market index typically mirrors the financial market's performance. Hence, accurate prediction of stock market index trends is essential for investors aiming to mitigate financial risk and enhance future investment returns. Traditional statistical approaches often struggle with the non-linear nature of stock market index data, leading to potential inaccuracies in long-term predictions. To address this issue, we introduce the TCN-LSTM-SNN (TLSNN) model, a hybrid framework that integrates Long Short-Term Memory (LSTM) and Temporal Convolutional Network (TCN) for robust feature extraction, within a highly efficient Spiking Neural Network (SNN) architecture. Additionally, we employ the Subtraction-Average-Based Optimizer (SABO) to refine the Variational Mode Decomposition (VMD) technique, thereby separating the periodic and trend components of stock indices, reducing noise interference, and establishing a decomposition ensemble framework to bolster the model's resilience. The experimental results show that the VMD-TLSNN hybrid model suggested in this study surpasses other individual benchmark models and their hybrid models in prediction accuracy. Additionally, it demonstrates notably lower energy consumption compared to other hybrid models.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 4","pages":"841-867"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873965/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2024.2395961","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

The stock market index typically mirrors the financial market's performance. Hence, accurate prediction of stock market index trends is essential for investors aiming to mitigate financial risk and enhance future investment returns. Traditional statistical approaches often struggle with the non-linear nature of stock market index data, leading to potential inaccuracies in long-term predictions. To address this issue, we introduce the TCN-LSTM-SNN (TLSNN) model, a hybrid framework that integrates Long Short-Term Memory (LSTM) and Temporal Convolutional Network (TCN) for robust feature extraction, within a highly efficient Spiking Neural Network (SNN) architecture. Additionally, we employ the Subtraction-Average-Based Optimizer (SABO) to refine the Variational Mode Decomposition (VMD) technique, thereby separating the periodic and trend components of stock indices, reducing noise interference, and establishing a decomposition ensemble framework to bolster the model's resilience. The experimental results show that the VMD-TLSNN hybrid model suggested in this study surpasses other individual benchmark models and their hybrid models in prediction accuracy. Additionally, it demonstrates notably lower energy consumption compared to other hybrid models.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信