{"title":"Research progress in near-infrared spectroscopy for detecting the quality of potato crops","authors":"Wenjing Ren, Qingqing Jiang, Wenliang Qi","doi":"10.1186/s40538-025-00747-5","DOIUrl":null,"url":null,"abstract":"<div><p>NIR spectroscopy-based detection technology is an analytical methodology that utilises the absorption, reflection, and transmission properties of near-infrared light when interacting with a variety of substances. The technique facilitates the assessment of the composition and characteristics of the materials being analysed. Notably, NIR spectroscopy is characterised by its nondestructive nature, rapid execution, high sensitivity, ease of operation, and efficiency in analysis. In recent years, this technology has been widely applied and expanded in many fields, such as food analysis, biology, and medicine. Root crops, including but not limited to potatoes, cassava, yams, and sweet potatoes, are vital nutritional components of human diets and also serve as critical raw materials in food processing and industrial applications. The significance of these crops is underscored by their impact on consumer health and the economic viability of enterprises, thereby highlighting the importance of effective detection methods for these crops. NIR spectroscopy detection technology is capable of conducting thorough evaluations of both the internal qualities (e.g., starch, protein, sugars, and soluble solids) and the external qualities (e.g., appearance, morphology, pest infestations, and diseases) of root crops. In comparison with alternative spectroscopic techniques, NIR spectroscopy offers a more straightforward approach for the detection and analysis of root crop samples, whilst preserving the integrity of the samples. This emphasises the significant potential of NIR spectroscopy for real-time online monitoring of root crops. The present paper provides a concise overview of the principles underlying NIR spectroscopy detection technology and synthesises research findings regarding its application in the quality assessment of root crops. It emphasises recent advancements in the field, particularly concerning sample pretreatment, spectral collection and processing, and model development. The discussion further encompasses the advantages and limitations of NIR spectroscopy technology, along with the primary challenges encountered in its practical applications and prospects for future development.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00747-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00747-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
NIR spectroscopy-based detection technology is an analytical methodology that utilises the absorption, reflection, and transmission properties of near-infrared light when interacting with a variety of substances. The technique facilitates the assessment of the composition and characteristics of the materials being analysed. Notably, NIR spectroscopy is characterised by its nondestructive nature, rapid execution, high sensitivity, ease of operation, and efficiency in analysis. In recent years, this technology has been widely applied and expanded in many fields, such as food analysis, biology, and medicine. Root crops, including but not limited to potatoes, cassava, yams, and sweet potatoes, are vital nutritional components of human diets and also serve as critical raw materials in food processing and industrial applications. The significance of these crops is underscored by their impact on consumer health and the economic viability of enterprises, thereby highlighting the importance of effective detection methods for these crops. NIR spectroscopy detection technology is capable of conducting thorough evaluations of both the internal qualities (e.g., starch, protein, sugars, and soluble solids) and the external qualities (e.g., appearance, morphology, pest infestations, and diseases) of root crops. In comparison with alternative spectroscopic techniques, NIR spectroscopy offers a more straightforward approach for the detection and analysis of root crop samples, whilst preserving the integrity of the samples. This emphasises the significant potential of NIR spectroscopy for real-time online monitoring of root crops. The present paper provides a concise overview of the principles underlying NIR spectroscopy detection technology and synthesises research findings regarding its application in the quality assessment of root crops. It emphasises recent advancements in the field, particularly concerning sample pretreatment, spectral collection and processing, and model development. The discussion further encompasses the advantages and limitations of NIR spectroscopy technology, along with the primary challenges encountered in its practical applications and prospects for future development.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.