Research progress in near-infrared spectroscopy for detecting the quality of potato crops

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wenjing Ren, Qingqing Jiang, Wenliang Qi
{"title":"Research progress in near-infrared spectroscopy for detecting the quality of potato crops","authors":"Wenjing Ren,&nbsp;Qingqing Jiang,&nbsp;Wenliang Qi","doi":"10.1186/s40538-025-00747-5","DOIUrl":null,"url":null,"abstract":"<div><p>NIR spectroscopy-based detection technology is an analytical methodology that utilises the absorption, reflection, and transmission properties of near-infrared light when interacting with a variety of substances. The technique facilitates the assessment of the composition and characteristics of the materials being analysed. Notably, NIR spectroscopy is characterised by its nondestructive nature, rapid execution, high sensitivity, ease of operation, and efficiency in analysis. In recent years, this technology has been widely applied and expanded in many fields, such as food analysis, biology, and medicine. Root crops, including but not limited to potatoes, cassava, yams, and sweet potatoes, are vital nutritional components of human diets and also serve as critical raw materials in food processing and industrial applications. The significance of these crops is underscored by their impact on consumer health and the economic viability of enterprises, thereby highlighting the importance of effective detection methods for these crops. NIR spectroscopy detection technology is capable of conducting thorough evaluations of both the internal qualities (e.g., starch, protein, sugars, and soluble solids) and the external qualities (e.g., appearance, morphology, pest infestations, and diseases) of root crops. In comparison with alternative spectroscopic techniques, NIR spectroscopy offers a more straightforward approach for the detection and analysis of root crop samples, whilst preserving the integrity of the samples. This emphasises the significant potential of NIR spectroscopy for real-time online monitoring of root crops. The present paper provides a concise overview of the principles underlying NIR spectroscopy detection technology and synthesises research findings regarding its application in the quality assessment of root crops. It emphasises recent advancements in the field, particularly concerning sample pretreatment, spectral collection and processing, and model development. The discussion further encompasses the advantages and limitations of NIR spectroscopy technology, along with the primary challenges encountered in its practical applications and prospects for future development.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"12 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-025-00747-5","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-025-00747-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

NIR spectroscopy-based detection technology is an analytical methodology that utilises the absorption, reflection, and transmission properties of near-infrared light when interacting with a variety of substances. The technique facilitates the assessment of the composition and characteristics of the materials being analysed. Notably, NIR spectroscopy is characterised by its nondestructive nature, rapid execution, high sensitivity, ease of operation, and efficiency in analysis. In recent years, this technology has been widely applied and expanded in many fields, such as food analysis, biology, and medicine. Root crops, including but not limited to potatoes, cassava, yams, and sweet potatoes, are vital nutritional components of human diets and also serve as critical raw materials in food processing and industrial applications. The significance of these crops is underscored by their impact on consumer health and the economic viability of enterprises, thereby highlighting the importance of effective detection methods for these crops. NIR spectroscopy detection technology is capable of conducting thorough evaluations of both the internal qualities (e.g., starch, protein, sugars, and soluble solids) and the external qualities (e.g., appearance, morphology, pest infestations, and diseases) of root crops. In comparison with alternative spectroscopic techniques, NIR spectroscopy offers a more straightforward approach for the detection and analysis of root crop samples, whilst preserving the integrity of the samples. This emphasises the significant potential of NIR spectroscopy for real-time online monitoring of root crops. The present paper provides a concise overview of the principles underlying NIR spectroscopy detection technology and synthesises research findings regarding its application in the quality assessment of root crops. It emphasises recent advancements in the field, particularly concerning sample pretreatment, spectral collection and processing, and model development. The discussion further encompasses the advantages and limitations of NIR spectroscopy technology, along with the primary challenges encountered in its practical applications and prospects for future development.

Graphical Abstract

近红外光谱检测马铃薯作物品质的研究进展
基于近红外光谱的检测技术是一种分析方法,它利用近红外光与各种物质相互作用时的吸收、反射和透射特性。该技术有助于评估所分析材料的成分和特性。值得注意的是,近红外光谱具有无损、快速、高灵敏度、易于操作和分析效率高的特点。近年来,该技术在食品分析、生物、医学等诸多领域得到了广泛的应用和拓展。块根作物,包括但不限于土豆、木薯、山药和红薯,是人类饮食的重要营养成分,也是食品加工和工业应用的关键原料。这些作物对消费者健康和企业经济生存能力的影响突出了它们的重要性,从而突出了对这些作物采取有效检测方法的重要性。近红外光谱检测技术能够对块根作物的内在品质(如淀粉、蛋白质、糖和可溶性固体)和外在品质(如外观、形态、虫害和病害)进行全面的评估。与其他光谱技术相比,近红外光谱技术为块根作物样品的检测和分析提供了更直接的方法,同时保持了样品的完整性。这强调了近红外光谱在块根作物实时在线监测方面的巨大潜力。本文简要介绍了近红外光谱检测技术的基本原理,并综合了近红外光谱检测技术在块根作物品质评价中的应用研究成果。它强调了该领域的最新进展,特别是关于样品预处理,光谱收集和处理以及模型开发。讨论了近红外光谱技术的优点和局限性,以及在实际应用中遇到的主要挑战和未来的发展前景。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信