Ghulam Abbas Lashari , Farhan Mumtaz , Abdul Aziz , Mumtaz Ali
{"title":"Temperature measurement with compact Fabry-Perot Interferometer employing polymer-filled Hollow Core Fiber","authors":"Ghulam Abbas Lashari , Farhan Mumtaz , Abdul Aziz , Mumtaz Ali","doi":"10.1016/j.ijleo.2025.172277","DOIUrl":null,"url":null,"abstract":"<div><div>This research proposes and experimentally demonstrates a polymer-filled Hollow Core Fiber (HCF) based compact Fabry-Perot Interferometer (FPI) for temperature sensing. The two beams: one reflectd at the interface between multimode fiber and the hollow core fiber and the other beam reflected at the interface between the hollow core fiber and the thermosensitive polymer form the Fabry-Perot cavity. The thermosensitive material filled in the core of the HCF acts as the sensing element. The HCF core is partially filled with transparent photopolymer, which has high Thermo-Optic Coefficient (TOC) and Thermo-Expansion Coefficient (TEC) as compared to silica, therefore it can provide high temperature sensitivity. The temperature sensitivity of the proposed FPI sensor can reach up to 53.5 pm/℃. The results indicate that the polymer-filled hollow-core fiber based FPI offers a promising approach for achieving high temperature sensing than pure silica based sensors. The proposed device consists of compact design with easy and low-cost fabrication. Moreover, the temperature measuring device provides stable and linear output response and brings numerous prospects for ocean temperature measurements, food, medical and chemical sensing applications.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"327 ","pages":"Article 172277"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402625000658","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes and experimentally demonstrates a polymer-filled Hollow Core Fiber (HCF) based compact Fabry-Perot Interferometer (FPI) for temperature sensing. The two beams: one reflectd at the interface between multimode fiber and the hollow core fiber and the other beam reflected at the interface between the hollow core fiber and the thermosensitive polymer form the Fabry-Perot cavity. The thermosensitive material filled in the core of the HCF acts as the sensing element. The HCF core is partially filled with transparent photopolymer, which has high Thermo-Optic Coefficient (TOC) and Thermo-Expansion Coefficient (TEC) as compared to silica, therefore it can provide high temperature sensitivity. The temperature sensitivity of the proposed FPI sensor can reach up to 53.5 pm/℃. The results indicate that the polymer-filled hollow-core fiber based FPI offers a promising approach for achieving high temperature sensing than pure silica based sensors. The proposed device consists of compact design with easy and low-cost fabrication. Moreover, the temperature measuring device provides stable and linear output response and brings numerous prospects for ocean temperature measurements, food, medical and chemical sensing applications.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.