A failure mechanism of 1.2 kV/20 A 4H-SiC Schottky barrier diodes under humidity and high reverse bias voltage

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Fanpeng Zeng , Xinyu Wang , Tianlu Wang , Yingxin Cui , Kuan Yew Cheong , Handoko Linewih , Jisheng Han
{"title":"A failure mechanism of 1.2 kV/20 A 4H-SiC Schottky barrier diodes under humidity and high reverse bias voltage","authors":"Fanpeng Zeng ,&nbsp;Xinyu Wang ,&nbsp;Tianlu Wang ,&nbsp;Yingxin Cui ,&nbsp;Kuan Yew Cheong ,&nbsp;Handoko Linewih ,&nbsp;Jisheng Han","doi":"10.1016/j.microrel.2025.115674","DOIUrl":null,"url":null,"abstract":"<div><div>SiC power devices have higher blocking voltage, lower on-resistance, and higher operating temperature than Si-based devices, which can be widely used in electric vehicles, rail transit, and high-voltage power transmission. However, the more severe application environments put higher demands on their reliability. In this paper, 1.2 kV/20 A SiC Schottky Barrier Diodes (SBDs) were evaluated after subjected to a series of reliability tests, including high-temperature storage (HTS), low-temperature storage (LTS), high-temperature reverse bias (HTRB) and high voltage, high humidity, high temperature reverse biased (HV-H<sup>3</sup>TRB) test. All devices passed the HTS, LTS and HTRB tests, but only 80 % of the devices passed the HV-H<sup>3</sup>TRB, which was mainly caused by pre-breakdown before 1200 V. Failure analysis showed that the breakdown point was located at the edge of the termination with cracks and delamination of the passivation layer were observed. Of 80 % of the failed devices after HV- H<sup>3</sup>TRB, almost all showed failure mode of passivation layer damage. With the root cause, the failure mechanism has been identified. This indicates that the passivation layer plays a critical role to determine the reliability of a SiC SBD device.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"168 ","pages":"Article 115674"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425000873","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SiC power devices have higher blocking voltage, lower on-resistance, and higher operating temperature than Si-based devices, which can be widely used in electric vehicles, rail transit, and high-voltage power transmission. However, the more severe application environments put higher demands on their reliability. In this paper, 1.2 kV/20 A SiC Schottky Barrier Diodes (SBDs) were evaluated after subjected to a series of reliability tests, including high-temperature storage (HTS), low-temperature storage (LTS), high-temperature reverse bias (HTRB) and high voltage, high humidity, high temperature reverse biased (HV-H3TRB) test. All devices passed the HTS, LTS and HTRB tests, but only 80 % of the devices passed the HV-H3TRB, which was mainly caused by pre-breakdown before 1200 V. Failure analysis showed that the breakdown point was located at the edge of the termination with cracks and delamination of the passivation layer were observed. Of 80 % of the failed devices after HV- H3TRB, almost all showed failure mode of passivation layer damage. With the root cause, the failure mechanism has been identified. This indicates that the passivation layer plays a critical role to determine the reliability of a SiC SBD device.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信