S. Tricot , H. Ikeda , H.C. Tchouekem , J.-C. Le Breton , S. Yasuda , P. Krüger , P. Le Fèvre , D. Sébilleau , T. Jaouen , P. Schieffer
{"title":"Photoelectron diffraction of twisted bilayer graphene","authors":"S. Tricot , H. Ikeda , H.C. Tchouekem , J.-C. Le Breton , S. Yasuda , P. Krüger , P. Le Fèvre , D. Sébilleau , T. Jaouen , P. Schieffer","doi":"10.1016/j.elspec.2025.147524","DOIUrl":null,"url":null,"abstract":"<div><div>Photoelectron diffraction (PED) is a powerful spectroscopic technique that combines elemental resolution with a high sensitivity to the local atomic arrangement at crystal surfaces, thus providing unique fingerprints of selected atomic sites in matter. Stimulated by the rapid innovation in the development of various analysis methods for probing the atomic and electronic structures of van der Waals (vdW) heterostructures of two-dimensional materials, we present a theoretical assessment of the capacity of PED for extracting structural properties such as stacking, twist angles and interlayer distances. We provide a complete description of PED for the benchmark vdW heterostructure bilayer graphene (BLG), by calculating and analyzing the PED of BLG in Bernal and AA-stacking as well as twisted BLG for a wide range of the twist angle.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147524"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204825000118","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Photoelectron diffraction (PED) is a powerful spectroscopic technique that combines elemental resolution with a high sensitivity to the local atomic arrangement at crystal surfaces, thus providing unique fingerprints of selected atomic sites in matter. Stimulated by the rapid innovation in the development of various analysis methods for probing the atomic and electronic structures of van der Waals (vdW) heterostructures of two-dimensional materials, we present a theoretical assessment of the capacity of PED for extracting structural properties such as stacking, twist angles and interlayer distances. We provide a complete description of PED for the benchmark vdW heterostructure bilayer graphene (BLG), by calculating and analyzing the PED of BLG in Bernal and AA-stacking as well as twisted BLG for a wide range of the twist angle.
期刊介绍:
The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.