Photoelectron diffraction of twisted bilayer graphene

IF 1.8 4区 物理与天体物理 Q2 SPECTROSCOPY
S. Tricot , H. Ikeda , H.C. Tchouekem , J.-C. Le Breton , S. Yasuda , P. Krüger , P. Le Fèvre , D. Sébilleau , T. Jaouen , P. Schieffer
{"title":"Photoelectron diffraction of twisted bilayer graphene","authors":"S. Tricot ,&nbsp;H. Ikeda ,&nbsp;H.C. Tchouekem ,&nbsp;J.-C. Le Breton ,&nbsp;S. Yasuda ,&nbsp;P. Krüger ,&nbsp;P. Le Fèvre ,&nbsp;D. Sébilleau ,&nbsp;T. Jaouen ,&nbsp;P. Schieffer","doi":"10.1016/j.elspec.2025.147524","DOIUrl":null,"url":null,"abstract":"<div><div>Photoelectron diffraction (PED) is a powerful spectroscopic technique that combines elemental resolution with a high sensitivity to the local atomic arrangement at crystal surfaces, thus providing unique fingerprints of selected atomic sites in matter. Stimulated by the rapid innovation in the development of various analysis methods for probing the atomic and electronic structures of van der Waals (vdW) heterostructures of two-dimensional materials, we present a theoretical assessment of the capacity of PED for extracting structural properties such as stacking, twist angles and interlayer distances. We provide a complete description of PED for the benchmark vdW heterostructure bilayer graphene (BLG), by calculating and analyzing the PED of BLG in Bernal and AA-stacking as well as twisted BLG for a wide range of the twist angle.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147524"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204825000118","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectron diffraction (PED) is a powerful spectroscopic technique that combines elemental resolution with a high sensitivity to the local atomic arrangement at crystal surfaces, thus providing unique fingerprints of selected atomic sites in matter. Stimulated by the rapid innovation in the development of various analysis methods for probing the atomic and electronic structures of van der Waals (vdW) heterostructures of two-dimensional materials, we present a theoretical assessment of the capacity of PED for extracting structural properties such as stacking, twist angles and interlayer distances. We provide a complete description of PED for the benchmark vdW heterostructure bilayer graphene (BLG), by calculating and analyzing the PED of BLG in Bernal and AA-stacking as well as twisted BLG for a wide range of the twist angle.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
64
审稿时长
60 days
期刊介绍: The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信