Experimental study on low-pressure and high-temperature pyrolysis of 1, 3-butadiene using synchrotron radiation and SiC flash microreactor

IF 1.8 4区 物理与天体物理 Q2 SPECTROSCOPY
Jun Zhang , Jianhui Jin , Yujie Zhao , Jize Sun , Weifeng Wang
{"title":"Experimental study on low-pressure and high-temperature pyrolysis of 1, 3-butadiene using synchrotron radiation and SiC flash microreactor","authors":"Jun Zhang ,&nbsp;Jianhui Jin ,&nbsp;Yujie Zhao ,&nbsp;Jize Sun ,&nbsp;Weifeng Wang","doi":"10.1016/j.elspec.2025.147527","DOIUrl":null,"url":null,"abstract":"<div><div>1,3-Butadiene is a crucial intermediate in hydrocarbon combustion and pyrolysis processes and plays a significant role as a precursor in the formation of polycyclic aromatic hydrocarbons (PAHs) and soot. This study investigates the low-pressure and high-temperature pyrolysis of 1,3-butadiene by using a newly designed silicon carbide (SiC) tubular flow microreactor, in combination with supersonic molecular beam sampling, synchrotron radiation vacuum ultraviolet single-photon ionization, and reflective time-of-flight mass spectrometry (SR-VUV-TOF-PIMS). We identified 36 pyrolysis products, ranging in mass-to-charge ratio (<em>m/z</em>) from 15 to 128, which included free radicals and isomeric species. The study determined the initial pyrolysis temperature of the parent compound and the initial formation temperatures of the products. Comparative analysis of our results with previous literature revealed the primary cleavage pathways in this work: 1,3-C<sub>4</sub>H<sub>6</sub> → C<sub>2</sub>H<sub>4</sub> + C<sub>2</sub>H<sub>2</sub>, 1,3-C<sub>4</sub>H<sub>6</sub> → 1,2-C<sub>4</sub>H<sub>6</sub>, 1,2-C<sub>4</sub>H<sub>6</sub> → C<sub>3</sub>H<sub>3</sub>· + CH<sub>3</sub>·<sub>,</sub> 1,3-C<sub>4</sub>H<sub>6</sub> + C<sub>3</sub>H<sub>3</sub>· → C<sub>3</sub>H<sub>4</sub> + C<sub>4</sub>H<sub>5</sub>·, 1,3-i-C<sub>4</sub>H<sub>5</sub>· → C<sub>4</sub>H<sub>4</sub> + H· and 1,3-n-C<sub>4</sub>H<sub>5</sub>· → C<sub>4</sub>H<sub>4</sub> + H·. These studies contribute valuable insights into the mechanisms of hydrocarbon combustion and pyrolysis, as well as the reference for the formation processes of PAHs and soot.</div></div>","PeriodicalId":15726,"journal":{"name":"Journal of Electron Spectroscopy and Related Phenomena","volume":"280 ","pages":"Article 147527"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electron Spectroscopy and Related Phenomena","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368204825000143","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

1,3-Butadiene is a crucial intermediate in hydrocarbon combustion and pyrolysis processes and plays a significant role as a precursor in the formation of polycyclic aromatic hydrocarbons (PAHs) and soot. This study investigates the low-pressure and high-temperature pyrolysis of 1,3-butadiene by using a newly designed silicon carbide (SiC) tubular flow microreactor, in combination with supersonic molecular beam sampling, synchrotron radiation vacuum ultraviolet single-photon ionization, and reflective time-of-flight mass spectrometry (SR-VUV-TOF-PIMS). We identified 36 pyrolysis products, ranging in mass-to-charge ratio (m/z) from 15 to 128, which included free radicals and isomeric species. The study determined the initial pyrolysis temperature of the parent compound and the initial formation temperatures of the products. Comparative analysis of our results with previous literature revealed the primary cleavage pathways in this work: 1,3-C4H6 → C2H4 + C2H2, 1,3-C4H6 → 1,2-C4H6, 1,2-C4H6 → C3H3· + CH3·, 1,3-C4H6 + C3H3· → C3H4 + C4H5·, 1,3-i-C4H5· → C4H4 + H· and 1,3-n-C4H5· → C4H4 + H·. These studies contribute valuable insights into the mechanisms of hydrocarbon combustion and pyrolysis, as well as the reference for the formation processes of PAHs and soot.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
64
审稿时长
60 days
期刊介绍: The Journal of Electron Spectroscopy and Related Phenomena publishes experimental, theoretical and applied work in the field of electron spectroscopy and electronic structure, involving techniques which use high energy photons (>10 eV) or electrons as probes or detected particles in the investigation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信