Data collection, enhancement, and classification of functional near-infrared spectroscopy motor execution and imagery.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Baiwei Sun, Xiu Zhang, Xin Zhang, Bingyue Xu, Yujie Wang
{"title":"Data collection, enhancement, and classification of functional near-infrared spectroscopy motor execution and imagery.","authors":"Baiwei Sun, Xiu Zhang, Xin Zhang, Bingyue Xu, Yujie Wang","doi":"10.1063/5.0236392","DOIUrl":null,"url":null,"abstract":"<p><p>Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interference, which will affect the accuracy of the data classification. The emerging functional near-infrared spectroscopy (fNIRS) technique, while overcoming the drawbacks of EEG's susceptibility to interference and difficulty in detecting motor signals, has less publicly available data. In this paper, we designed a motor execution and imagery experiment based on a wearable fNIRS device to acquire brain signals and proposed a modified Kolmogorov-Arnold network (named SE-KAN) for recognizing fNIRS signals corresponding to the task. Due to the small number of subjects in this experiment, the Wasserstein generative adversarial network was used to enhance the data processing. For the fNIRS data recognition task, the SE-KAN method achieved 96.36 ± 2.43% single-subject accuracy and 84.72 ± 3.27% cross-subject accuracy. It is believed that the dataset and method of this paper will help the development of BCI.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0236392","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Recognition and execution of motor imagery play a key role in brain-computer interface (BCI) and are prerequisites for converting thoughts into executable instructions. However, to date, data acquired through commonly used electroencephalography (EEG) methods are very sensitive to motion interference, which will affect the accuracy of the data classification. The emerging functional near-infrared spectroscopy (fNIRS) technique, while overcoming the drawbacks of EEG's susceptibility to interference and difficulty in detecting motor signals, has less publicly available data. In this paper, we designed a motor execution and imagery experiment based on a wearable fNIRS device to acquire brain signals and proposed a modified Kolmogorov-Arnold network (named SE-KAN) for recognizing fNIRS signals corresponding to the task. Due to the small number of subjects in this experiment, the Wasserstein generative adversarial network was used to enhance the data processing. For the fNIRS data recognition task, the SE-KAN method achieved 96.36 ± 2.43% single-subject accuracy and 84.72 ± 3.27% cross-subject accuracy. It is believed that the dataset and method of this paper will help the development of BCI.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信