An ultra-compact piezoelectric motor with self-satisfied symmetry for enhanced performance.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Yalong Yang, Shengxin Cheng, Qingyou Lu, Zihao Li, Shuai Dong, Wenjie Meng, Xulai Zhu, Jihao Wang, Yubin Hou, Yalin Lu
{"title":"An ultra-compact piezoelectric motor with self-satisfied symmetry for enhanced performance.","authors":"Yalong Yang, Shengxin Cheng, Qingyou Lu, Zihao Li, Shuai Dong, Wenjie Meng, Xulai Zhu, Jihao Wang, Yubin Hou, Yalin Lu","doi":"10.1063/5.0246031","DOIUrl":null,"url":null,"abstract":"<p><p>The symmetry and compactness of the structure has a considerable impact on the properties of piezoelectric motors, including step size, threshold voltage, and effective length. This is particularly evident in motors driven by the inertia principle. Asymmetric and eccentric designs have been observed to result in greater deflections and wobbling during operation, which in turn leads to additional energy loss derived from the energy generated by piezoelectric deformation and further impedes enhancements in overall compactness. In order to address this issue, we present an inertial piezoelectric motor that offers high stability and adaptive symmetry in this paper. The motor's structure ensures that the four edges of the sliding shaft always remain tangent to the inner wall of the piezoelectric tube, thereby achieving a uniform distribution of pressure and friction while ensuring the motor's self-satisfying symmetry and coaxial alignment. The effective length of the piezoelectric motor is only 9 mm, which is just 30% of the length of a conventional inertial piezoelectric motor, exemplifying a remarkably high degree of compactness. With a step size ranging from 0.1 to 1 μm at room temperature and a threshold voltage of about 30 V, these motors are small, simple, and extremely compact, demonstrating significant potential for applications in scanning tunneling microscopes used in narrow and confined spaces.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0246031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The symmetry and compactness of the structure has a considerable impact on the properties of piezoelectric motors, including step size, threshold voltage, and effective length. This is particularly evident in motors driven by the inertia principle. Asymmetric and eccentric designs have been observed to result in greater deflections and wobbling during operation, which in turn leads to additional energy loss derived from the energy generated by piezoelectric deformation and further impedes enhancements in overall compactness. In order to address this issue, we present an inertial piezoelectric motor that offers high stability and adaptive symmetry in this paper. The motor's structure ensures that the four edges of the sliding shaft always remain tangent to the inner wall of the piezoelectric tube, thereby achieving a uniform distribution of pressure and friction while ensuring the motor's self-satisfying symmetry and coaxial alignment. The effective length of the piezoelectric motor is only 9 mm, which is just 30% of the length of a conventional inertial piezoelectric motor, exemplifying a remarkably high degree of compactness. With a step size ranging from 0.1 to 1 μm at room temperature and a threshold voltage of about 30 V, these motors are small, simple, and extremely compact, demonstrating significant potential for applications in scanning tunneling microscopes used in narrow and confined spaces.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信