{"title":"Human-in-the-Loop Optimization of Perceived Realism of Multi-Modal Haptic Rendering Under Conflicting Sensory Cues.","authors":"Harun Tolasa, Bilal Catkin, Volkan Patoglu","doi":"10.1109/TOH.2025.3535416","DOIUrl":null,"url":null,"abstract":"<p><p>During haptic rendering, a visual display and a haptic interface are commonly utilized together to elicit multi-sensory perception of a virtual object, through a combination and integration of force-related and movement-related cues. In this study, we explore visual-haptic cue integration during multi-modal haptic rendering under conflicting cues and propose a systematic means to determine the optimal visual scaling for haptic manipulation that maximizes the perceived realism of spring rendering for a given haptic interface. We show that the parameters affecting visual-haptic congruency can be effectively optimized through a qualitative feedback-based human-in-the-loop (HiL) optimization to ensure a consistently high rating of perceived realism. Accordingly, the multi-modal perception of users can be successfully enhanced by solely modulating the visual feedback without altering the haptic feedback, to make virtual environments feel stiffer or more compliant, significantly extending the range of perceived stiffness levels for a haptic interface. We extend our results to a group of individuals to capture the multi-dimensional psychometric field that characterizes the cumulative effect of feedback modalities utilized during sensory cue integration under conflicts. Our results not only provide reliable estimates of just noticeable difference thresholds for stiffness with and without visual scaling but also capture all the prominent features of sensory cue integration, indicating weights that are proportional to the congruency level of manipulated visual signals. Overall, preference-based HiL optimization excels as a systematic and efficient method of studying multi-modal perception under conflicts.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2025.3535416","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
During haptic rendering, a visual display and a haptic interface are commonly utilized together to elicit multi-sensory perception of a virtual object, through a combination and integration of force-related and movement-related cues. In this study, we explore visual-haptic cue integration during multi-modal haptic rendering under conflicting cues and propose a systematic means to determine the optimal visual scaling for haptic manipulation that maximizes the perceived realism of spring rendering for a given haptic interface. We show that the parameters affecting visual-haptic congruency can be effectively optimized through a qualitative feedback-based human-in-the-loop (HiL) optimization to ensure a consistently high rating of perceived realism. Accordingly, the multi-modal perception of users can be successfully enhanced by solely modulating the visual feedback without altering the haptic feedback, to make virtual environments feel stiffer or more compliant, significantly extending the range of perceived stiffness levels for a haptic interface. We extend our results to a group of individuals to capture the multi-dimensional psychometric field that characterizes the cumulative effect of feedback modalities utilized during sensory cue integration under conflicts. Our results not only provide reliable estimates of just noticeable difference thresholds for stiffness with and without visual scaling but also capture all the prominent features of sensory cue integration, indicating weights that are proportional to the congruency level of manipulated visual signals. Overall, preference-based HiL optimization excels as a systematic and efficient method of studying multi-modal perception under conflicts.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.