{"title":"Calibration and Closed-Loop Control Improve Performance of a Force Feedback Device","authors":"Jun Zhang;Wenjie Shen;Liuchen Chen;Aiguo Song","doi":"10.1109/TOH.2025.3531471","DOIUrl":null,"url":null,"abstract":"Interaction accuracy and transparency of force feedback devices (FFDs) are crucial in applications like remote surgery, where high force feedback accuracy (FFA) ensures the safety of delicate procedures. However, few studies have introduced the force calibration of FFDs, especially addressing the low FFA issue in high dynamic motions. This paper proposes a calibration method and a closed-loop control (CLC) strategy for an FFD to enhance its FFA. Tailored calibration models were developed by decoupling factors causing feedback force errors. The CLC was achieved by modeling the FFD's kinematics, statics, and dynamics and integrating force and current information. Experimental results show that the integration of the models and CLC significantly improved FFA, evidenced by a reduction in mean absolute error (MAE) from 0.843 N to 0.054 N and a mean relative absolute error (MRAE) from 18.89% to 1.52% in static conditions. In dynamic motions, the MAE reduced from 3.10 N to 0.370 N, and the MRAE declined from 117.66% to 22.57%. With human-in-the-loop, the CLC reduced the MAE by about 93% and the MRAE by about 92%. The ablation study showed the effectiveness of each calibration model. Our methodology can be applied to similar motor-driven FFDs.","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"18 1","pages":"255-268"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10845160/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Interaction accuracy and transparency of force feedback devices (FFDs) are crucial in applications like remote surgery, where high force feedback accuracy (FFA) ensures the safety of delicate procedures. However, few studies have introduced the force calibration of FFDs, especially addressing the low FFA issue in high dynamic motions. This paper proposes a calibration method and a closed-loop control (CLC) strategy for an FFD to enhance its FFA. Tailored calibration models were developed by decoupling factors causing feedback force errors. The CLC was achieved by modeling the FFD's kinematics, statics, and dynamics and integrating force and current information. Experimental results show that the integration of the models and CLC significantly improved FFA, evidenced by a reduction in mean absolute error (MAE) from 0.843 N to 0.054 N and a mean relative absolute error (MRAE) from 18.89% to 1.52% in static conditions. In dynamic motions, the MAE reduced from 3.10 N to 0.370 N, and the MRAE declined from 117.66% to 22.57%. With human-in-the-loop, the CLC reduced the MAE by about 93% and the MRAE by about 92%. The ablation study showed the effectiveness of each calibration model. Our methodology can be applied to similar motor-driven FFDs.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.