A comparative study on the protein digestion of four different soy beverages: effects of the composition, microstructure, and protein digestibility evaluation method.

IF 5.1 1区 农林科学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Food & Function Pub Date : 2025-03-04 DOI:10.1039/d4fo03919j
Junna Zhao, Xiangzhen Kong, Caimeng Zhang, Yufei Hua, Yeming Chen, Xingfei Li
{"title":"A comparative study on the protein digestion of four different soy beverages: effects of the composition, microstructure, and protein digestibility evaluation method.","authors":"Junna Zhao, Xiangzhen Kong, Caimeng Zhang, Yufei Hua, Yeming Chen, Xingfei Li","doi":"10.1039/d4fo03919j","DOIUrl":null,"url":null,"abstract":"<p><p>The increased consumption of soy-based products leads to the incentive for more sustainable soybean processing and more accurate nutritional evaluation. The protein structures and aggregation states of different components vary with different soy products, but their relationship with digestibility is unclear. In order to study the digestion of soy protein in complex food matrices, four soy-based beverages were carefully prepared, including whole component soy beverage (WS), soy beverage with insoluble soybean residue removed (DO-WS), soy beverage with lipids removed (DL-WS), and soy protein isolate beverage (HSPI). During digestion, the microstructure revealed that particles of all soy beverages were reduced and more evenly distributed, but striated fibres (in WS and DL-WS) still remained after digestion. Tricine-SDS-PAGE profiles showed that after <i>in vitro</i> gastrointestinal digestion of the four beverages, almost all the bands corresponding to the complete proteins from soy disappeared, leaving fewer visible bands with a low MW - below 12 kDa. <i>In vitro</i> protein digestibility analyzed by TCA precipitation (strategy B), which ranged from 64.24% to 68.70%, was more accurate, with peptides of MW <1 kDa accounting for over 84% for all the four digested fractions. Moreover, the highest values of <i>in vitro</i> DIAAS (96/80) and digestible protein (29.40/24.41 g per 100 g of soybeans) were achieved by WS. Characterization of the insoluble digesta further elucidated that peptides with a smaller MW (below 12 kDa) and a higher amount of hydrophobic amino acids aggregated more easily, resulting in the occurrence of precipitates and the relatively lower <i>in vitro</i> protein digestibility. This research contributes to the understanding of protein digestibility in whole legume-based diets, which in turn could aid in the development of new whole legume products and more efficient utilization of proteins.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo03919j","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The increased consumption of soy-based products leads to the incentive for more sustainable soybean processing and more accurate nutritional evaluation. The protein structures and aggregation states of different components vary with different soy products, but their relationship with digestibility is unclear. In order to study the digestion of soy protein in complex food matrices, four soy-based beverages were carefully prepared, including whole component soy beverage (WS), soy beverage with insoluble soybean residue removed (DO-WS), soy beverage with lipids removed (DL-WS), and soy protein isolate beverage (HSPI). During digestion, the microstructure revealed that particles of all soy beverages were reduced and more evenly distributed, but striated fibres (in WS and DL-WS) still remained after digestion. Tricine-SDS-PAGE profiles showed that after in vitro gastrointestinal digestion of the four beverages, almost all the bands corresponding to the complete proteins from soy disappeared, leaving fewer visible bands with a low MW - below 12 kDa. In vitro protein digestibility analyzed by TCA precipitation (strategy B), which ranged from 64.24% to 68.70%, was more accurate, with peptides of MW <1 kDa accounting for over 84% for all the four digested fractions. Moreover, the highest values of in vitro DIAAS (96/80) and digestible protein (29.40/24.41 g per 100 g of soybeans) were achieved by WS. Characterization of the insoluble digesta further elucidated that peptides with a smaller MW (below 12 kDa) and a higher amount of hydrophobic amino acids aggregated more easily, resulting in the occurrence of precipitates and the relatively lower in vitro protein digestibility. This research contributes to the understanding of protein digestibility in whole legume-based diets, which in turn could aid in the development of new whole legume products and more efficient utilization of proteins.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food & Function
Food & Function BIOCHEMISTRY & MOLECULAR BIOLOGY-FOOD SCIENCE & TECHNOLOGY
CiteScore
10.10
自引率
6.60%
发文量
957
审稿时长
1.8 months
期刊介绍: Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信