Dose optimisation to improve access to effective cancer medicines

Ian F Tannock, Elisabeth G E de Vries, Antonio Fojo, Marc Buyse, Lorenzo Moja
{"title":"Dose optimisation to improve access to effective cancer medicines","authors":"Ian F Tannock, Elisabeth G E de Vries, Antonio Fojo, Marc Buyse, Lorenzo Moja","doi":"10.1016/s1470-2045(24)00648-x","DOIUrl":null,"url":null,"abstract":"Access to many cancer medicines on WHO's Essential Medicines List (EML) is restricted because of price, especially in low-income and middle-income countries (LMICs). Other cancer medicines that have been shown to improve survival, such as immune checkpoint inhibitors for lung cancer, are not included on the EML because approved doses and schedules exceed affordable prices in LMICs. Multiple strategies are therefore needed to reduce medicine costs or circumvent these problems, such as optimising doses and schedules. Cancer medicines are approved by regulatory agencies, such as the US Food and Drug Administration and the European Medicines Agency, following rigorous clinical trials. However, these approvals can involve dosing regimens and treatment schedules that, although effective in showing statistically significant benefits in trials, can be higher in intensity, frequency, or duration than is necessary to achieve meaningful improved survival. In clinical practice, these regimens can lead to concerns about balancing optimal therapeutic outcomes with the risk of side-effects, patient quality of life, and long-term health effects. Various types of evidence can, and should, be used to explore and show near-equivalence of beneficial outcomes from reduced-intensity treatments, including randomised clinical trials, dose-finding phase 1 and 2 studies, and pharmacokinetic and pharmacodynamic studies. The positive effects of proving that lower doses or less intensive schedules retain therapeutic activity include reduced toxicity and large price reductions, leading to better cost-effectiveness and greater access to treatments that improve survival. Beyond regulatory approvals, identification of regimens that have similar outcomes with reduced doses and less intense schedules should be a priority for clinicians and policy makers in the selection process to identify effective medicines at national and global levels.","PeriodicalId":22865,"journal":{"name":"The Lancet Oncology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/s1470-2045(24)00648-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Access to many cancer medicines on WHO's Essential Medicines List (EML) is restricted because of price, especially in low-income and middle-income countries (LMICs). Other cancer medicines that have been shown to improve survival, such as immune checkpoint inhibitors for lung cancer, are not included on the EML because approved doses and schedules exceed affordable prices in LMICs. Multiple strategies are therefore needed to reduce medicine costs or circumvent these problems, such as optimising doses and schedules. Cancer medicines are approved by regulatory agencies, such as the US Food and Drug Administration and the European Medicines Agency, following rigorous clinical trials. However, these approvals can involve dosing regimens and treatment schedules that, although effective in showing statistically significant benefits in trials, can be higher in intensity, frequency, or duration than is necessary to achieve meaningful improved survival. In clinical practice, these regimens can lead to concerns about balancing optimal therapeutic outcomes with the risk of side-effects, patient quality of life, and long-term health effects. Various types of evidence can, and should, be used to explore and show near-equivalence of beneficial outcomes from reduced-intensity treatments, including randomised clinical trials, dose-finding phase 1 and 2 studies, and pharmacokinetic and pharmacodynamic studies. The positive effects of proving that lower doses or less intensive schedules retain therapeutic activity include reduced toxicity and large price reductions, leading to better cost-effectiveness and greater access to treatments that improve survival. Beyond regulatory approvals, identification of regimens that have similar outcomes with reduced doses and less intense schedules should be a priority for clinicians and policy makers in the selection process to identify effective medicines at national and global levels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信