KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Rongfeng Li, Dalin Wang
{"title":"KBA-PDNet: A primal-dual unrolling network with kernel basis attention for low-dose CT reconstruction.","authors":"Rongfeng Li, Dalin Wang","doi":"10.1177/08953996241308759","DOIUrl":null,"url":null,"abstract":"<p><p>Computed tomography (CT) image reconstruction is faced with challenge of balancing image quality and radiation dose. Recent unrolled optimization methods address low-dose CT image quality issues using convolutional neural networks or self-attention mechanisms as regularization operators. However, these approaches have limitations in adaptability, computational efficiency, or preservation of beneficial inductive biases. They also depend on initial reconstructions, potentially leading to information loss and error propagation. To overcome these limitations, Kernel Basis Attention Primal-Dual Network (KBA-PDNet) is proposed. The method unrolls multiple iterations of the proximal primal-dual optimization process, replacing traditional proximal operators with Kernel Basis Attention (KBA) modules. This design enables direct training from raw measurement data without relying on preliminary reconstructions. The KBA module achieves adaptability by learning and dynamically fusing kernel bases, generating customized convolution kernels for each spatial location. This approach maintains computational efficiency while preserving beneficial inductive biases of convolutions. By training end-to-end from raw projection data, KBA-PDNet fully utilizes all original information, potentially capturing details lost in preliminary reconstructions. Experiments on simulated and clinical datasets demonstrate that KBA-PDNet outperforms existing approaches in both image quality and computational efficiency.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"8953996241308759"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996241308759","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Computed tomography (CT) image reconstruction is faced with challenge of balancing image quality and radiation dose. Recent unrolled optimization methods address low-dose CT image quality issues using convolutional neural networks or self-attention mechanisms as regularization operators. However, these approaches have limitations in adaptability, computational efficiency, or preservation of beneficial inductive biases. They also depend on initial reconstructions, potentially leading to information loss and error propagation. To overcome these limitations, Kernel Basis Attention Primal-Dual Network (KBA-PDNet) is proposed. The method unrolls multiple iterations of the proximal primal-dual optimization process, replacing traditional proximal operators with Kernel Basis Attention (KBA) modules. This design enables direct training from raw measurement data without relying on preliminary reconstructions. The KBA module achieves adaptability by learning and dynamically fusing kernel bases, generating customized convolution kernels for each spatial location. This approach maintains computational efficiency while preserving beneficial inductive biases of convolutions. By training end-to-end from raw projection data, KBA-PDNet fully utilizes all original information, potentially capturing details lost in preliminary reconstructions. Experiments on simulated and clinical datasets demonstrate that KBA-PDNet outperforms existing approaches in both image quality and computational efficiency.

KBA-PDNet:用于低剂量 CT 重构的具有核基关注度的基元-双展开网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信