Z.J. Cheng , J.P. Qu , Y.J. Liu , W.J. Wu , P.C. He , S. Li , J. Zhao , J.L. Mo
{"title":"Enhancing atmospheric water harvesting on hydrophilic-superhydrophobic hybrid surfaces through wettability gradient and synergistic diversion channel","authors":"Z.J. Cheng , J.P. Qu , Y.J. Liu , W.J. Wu , P.C. He , S. Li , J. Zhao , J.L. Mo","doi":"10.1016/j.mtphys.2025.101691","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change and resource depletion have exacerbated freshwater shortages, underscoring the urgent need for sustainable water resources. Atmospheric water harvesting technology, inspired by natural structures-especially fog collection on hydrophilic-superhydrophobic hybrid surfaces-offers a feasible solution due to its simple fabrication process, high collection efficiency, and zero energy consumption. While hydrophilic-superhydrophobic hybrid surfaces show potential for improving water collection efficiency, research on the mechanisms of droplet nucleation, growth, detachment, and transport remains limited. In this study, a hydrophilic porous hybrid surface with tunable wettability was fabricated by adjusting laser processing parameters, achieving a maximum collection efficiency of 1874.7 mg/cm<sup>2</sup>/h at a contact angle of 6°. The surface energy difference caused by the wettability gradient on this superhydrophilic-superhydrophobic hybrid surface accelerated droplet detachment and transport. Additionally, the introduction of single-row and multi-row diversion channels disrupted the droplet's force equilibrium and enhanced its directional sliding, further increasing the collection efficiency to 3623.1 mg/cm<sup>2</sup>/h and 4016.9 mg/cm<sup>2</sup>/h, respectively. Simulation results indicate that the combined effects of wettability-driven forces and Laplace pressure significantly improve the efficiency of droplet nucleation, growth, detachment, and sliding. The tunable wettability hybrid surface developed in this study is highly versatile and can be applied to a wide range of substrates, showcasing substantial potential for atmospheric water harvesting offering a sustainable water resource solution for arid regions.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"52 ","pages":"Article 101691"},"PeriodicalIF":10.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000471","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change and resource depletion have exacerbated freshwater shortages, underscoring the urgent need for sustainable water resources. Atmospheric water harvesting technology, inspired by natural structures-especially fog collection on hydrophilic-superhydrophobic hybrid surfaces-offers a feasible solution due to its simple fabrication process, high collection efficiency, and zero energy consumption. While hydrophilic-superhydrophobic hybrid surfaces show potential for improving water collection efficiency, research on the mechanisms of droplet nucleation, growth, detachment, and transport remains limited. In this study, a hydrophilic porous hybrid surface with tunable wettability was fabricated by adjusting laser processing parameters, achieving a maximum collection efficiency of 1874.7 mg/cm2/h at a contact angle of 6°. The surface energy difference caused by the wettability gradient on this superhydrophilic-superhydrophobic hybrid surface accelerated droplet detachment and transport. Additionally, the introduction of single-row and multi-row diversion channels disrupted the droplet's force equilibrium and enhanced its directional sliding, further increasing the collection efficiency to 3623.1 mg/cm2/h and 4016.9 mg/cm2/h, respectively. Simulation results indicate that the combined effects of wettability-driven forces and Laplace pressure significantly improve the efficiency of droplet nucleation, growth, detachment, and sliding. The tunable wettability hybrid surface developed in this study is highly versatile and can be applied to a wide range of substrates, showcasing substantial potential for atmospheric water harvesting offering a sustainable water resource solution for arid regions.
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.