Optimization of l-Fucose Biosynthesis in Escherichia coli through Pathway Engineering and Mixed Carbon Source Strategy

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zihan Xia, Caiwen Lao, Jinyong Wu, Yiwen Jin, Xiangsong Chen, He Li, Xijie Fan, Lixia Yuan, Lijie Sun
{"title":"Optimization of l-Fucose Biosynthesis in Escherichia coli through Pathway Engineering and Mixed Carbon Source Strategy","authors":"Zihan Xia, Caiwen Lao, Jinyong Wu, Yiwen Jin, Xiangsong Chen, He Li, Xijie Fan, Lixia Yuan, Lijie Sun","doi":"10.1021/acs.jafc.4c12544","DOIUrl":null,"url":null,"abstract":"This study presents an engineered strain of <i>Escherichia coli</i> specifically designed to enhance the production of <span>l</span>-fucose while minimizing residues of 2′-fucosyllactose. The optimization strategies employed include the selection of key enzymes, optimization of gene copy numbers, and fermentation using mixed carbon sources. The metabolic flux was directed toward <span>l</span>-fucose synthesis by integrating preferred 1,2-fucosyltransferase and α-<span>l</span>-fucosidase into the genome. Furthermore, the gene copy numbers were optimized to enhance enzyme expression, thereby increasing <span>l</span>-fucose production. Additionally, the supply of guanosine 5′-triphosphate was improved, and cofactors were regenerated to better regulate metabolism. Modifications to transporter proteins effectively reduced the accumulation of 2′-fucosyllactose. The implementation of a glucose/glycerol co-fermentation strategy enhanced carbon flux distribution and strain efficiency. The optimized strain achieved a yield of 91.90 g/L of <span>l</span>-fucose in a 5 L bioreactor, representing an 80.01% increase over previous yields, with a productivity of 1.18 g L<sup>–1</sup> h<sup>–1</sup>. This yield is the highest reported for <span>l</span>-fucose, demonstrating its potential for industrial production.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"73 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c12544","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an engineered strain of Escherichia coli specifically designed to enhance the production of l-fucose while minimizing residues of 2′-fucosyllactose. The optimization strategies employed include the selection of key enzymes, optimization of gene copy numbers, and fermentation using mixed carbon sources. The metabolic flux was directed toward l-fucose synthesis by integrating preferred 1,2-fucosyltransferase and α-l-fucosidase into the genome. Furthermore, the gene copy numbers were optimized to enhance enzyme expression, thereby increasing l-fucose production. Additionally, the supply of guanosine 5′-triphosphate was improved, and cofactors were regenerated to better regulate metabolism. Modifications to transporter proteins effectively reduced the accumulation of 2′-fucosyllactose. The implementation of a glucose/glycerol co-fermentation strategy enhanced carbon flux distribution and strain efficiency. The optimized strain achieved a yield of 91.90 g/L of l-fucose in a 5 L bioreactor, representing an 80.01% increase over previous yields, with a productivity of 1.18 g L–1 h–1. This yield is the highest reported for l-fucose, demonstrating its potential for industrial production.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信