A local search with chain search path strategy for real-world many-objective vehicle routing problem

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ying Zhou, Lingjing Kong, Hui Wang, Yiqiao Cai, Shaopeng Liu
{"title":"A local search with chain search path strategy for real-world many-objective vehicle routing problem","authors":"Ying Zhou, Lingjing Kong, Hui Wang, Yiqiao Cai, Shaopeng Liu","doi":"10.1007/s40747-025-01825-9","DOIUrl":null,"url":null,"abstract":"<p>This article focuses on a new application-oriented variant of vehicle routing problem. This problem comes from the daily distribution scenarios of a real-world logistics company. It is a large-scale (with customer sizes up to 2000), many-objective (with six objective functions) NP-hard problem with six constraints. Then, a local search with chain search path strategy (LS-CSP) is proposed to effectively solve the problem. It is a decomposition-based algorithm. First, the considered problem is decomposed into multiple single-objective subproblems. Then, local search is applied to solve these subproblems one by one. The advantage of the LS-CSP lies in a chain search path strategy, which is designed for determining the order of solving the subproblems. This strategy can help the algorithm find a high-quality solution set quickly. Finally, to assess the performance of the proposed LS-CSP, three instance sets containing 132 instances are provided, and four state-of-the-art decomposition-based approaches are adopted as the competitors. Experimental results show the effectiveness of the proposed algorithm for the considered problem.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"16 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01825-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This article focuses on a new application-oriented variant of vehicle routing problem. This problem comes from the daily distribution scenarios of a real-world logistics company. It is a large-scale (with customer sizes up to 2000), many-objective (with six objective functions) NP-hard problem with six constraints. Then, a local search with chain search path strategy (LS-CSP) is proposed to effectively solve the problem. It is a decomposition-based algorithm. First, the considered problem is decomposed into multiple single-objective subproblems. Then, local search is applied to solve these subproblems one by one. The advantage of the LS-CSP lies in a chain search path strategy, which is designed for determining the order of solving the subproblems. This strategy can help the algorithm find a high-quality solution set quickly. Finally, to assess the performance of the proposed LS-CSP, three instance sets containing 132 instances are provided, and four state-of-the-art decomposition-based approaches are adopted as the competitors. Experimental results show the effectiveness of the proposed algorithm for the considered problem.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信