Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes

IF 18.6 1区 医学 Q1 OPHTHALMOLOGY
Andrew I. Jobling , Ursula Greferath , Michael A. Dixon , Pialuisa Quiriconi , Belinda Eyar , Anna K. van Koeverden , Samuel A. Mills , Kirstan A. Vessey , Bang V. Bui , Erica L. Fletcher
{"title":"Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes","authors":"Andrew I. Jobling ,&nbsp;Ursula Greferath ,&nbsp;Michael A. Dixon ,&nbsp;Pialuisa Quiriconi ,&nbsp;Belinda Eyar ,&nbsp;Anna K. van Koeverden ,&nbsp;Samuel A. Mills ,&nbsp;Kirstan A. Vessey ,&nbsp;Bang V. Bui ,&nbsp;Erica L. Fletcher","doi":"10.1016/j.preteyeres.2025.101349","DOIUrl":null,"url":null,"abstract":"<div><div>The high metabolic demand of retinal neurons requires a precisely regulated vascular system that can deliver rapid changes in blood flow in response to neural need. In the retina, this is achieved via the action of a coordinated group of cells that form the neurovascular unit. While cells such as pericytes, Müller cells, and astrocytes have long been linked to neurovascular coupling, more recently the resident microglial population have also been implicated. In the healthy retina, microglia make extensive contact with blood vessels, as well as neuronal synapses, and are important in vascular patterning during development. Work in the brain and retina has recently indicated that microglia can directly regulate the local vasculature. In the retina, the fractalkine-Cx3cr1 signalling axis has been shown to induce local capillary constriction within the superficial vascular plexus via a mechanism involving components of the renin-angiotensin system. Furthermore, aberrant microglial induced vasoconstriction may be at the centre of early vascular reactivity changes observed in those with diabetes. This review summarizes the recent emerging evidence that microglia play multiple roles in retinal homeostasis especially in regulating the vasculature. We highlight what is known about the role of microglia under normal circumstances, and then build on this to discuss how microglia contribute to early vascular compromise during diabetes. Further understanding of the mechanisms of microglial-vascular regulation may allow alternate treatment strategies to be devised to reduce vascular pathology in diseases such as diabetic retinopathy.</div></div>","PeriodicalId":21159,"journal":{"name":"Progress in Retinal and Eye Research","volume":"106 ","pages":"Article 101349"},"PeriodicalIF":18.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Retinal and Eye Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350946225000229","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The high metabolic demand of retinal neurons requires a precisely regulated vascular system that can deliver rapid changes in blood flow in response to neural need. In the retina, this is achieved via the action of a coordinated group of cells that form the neurovascular unit. While cells such as pericytes, Müller cells, and astrocytes have long been linked to neurovascular coupling, more recently the resident microglial population have also been implicated. In the healthy retina, microglia make extensive contact with blood vessels, as well as neuronal synapses, and are important in vascular patterning during development. Work in the brain and retina has recently indicated that microglia can directly regulate the local vasculature. In the retina, the fractalkine-Cx3cr1 signalling axis has been shown to induce local capillary constriction within the superficial vascular plexus via a mechanism involving components of the renin-angiotensin system. Furthermore, aberrant microglial induced vasoconstriction may be at the centre of early vascular reactivity changes observed in those with diabetes. This review summarizes the recent emerging evidence that microglia play multiple roles in retinal homeostasis especially in regulating the vasculature. We highlight what is known about the role of microglia under normal circumstances, and then build on this to discuss how microglia contribute to early vascular compromise during diabetes. Further understanding of the mechanisms of microglial-vascular regulation may allow alternate treatment strategies to be devised to reduce vascular pathology in diseases such as diabetic retinopathy.
小胶质细胞对健康视网膜血管和糖尿病病变视网膜血管的调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
34.10
自引率
5.10%
发文量
78
期刊介绍: Progress in Retinal and Eye Research is a Reviews-only journal. By invitation, leading experts write on basic and clinical aspects of the eye in a style appealing to molecular biologists, neuroscientists and physiologists, as well as to vision researchers and ophthalmologists. The journal covers all aspects of eye research, including topics pertaining to the retina and pigment epithelial layer, cornea, tears, lacrimal glands, aqueous humour, iris, ciliary body, trabeculum, lens, vitreous humour and diseases such as dry-eye, inflammation, keratoconus, corneal dystrophy, glaucoma and cataract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信