Assessing the Utility of Regenerative Peripheral Nerve Interfaces (RPNIs) in Providing Referred Sensations in a Functional Task in a Virtual Environment

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Jake Kanetis;Michael A. Gonzalez;Alex K. Vaskov;Paul S. Cederna;Cynthia A. Chestek;Deanna H. Gates
{"title":"Assessing the Utility of Regenerative Peripheral Nerve Interfaces (RPNIs) in Providing Referred Sensations in a Functional Task in a Virtual Environment","authors":"Jake Kanetis;Michael A. Gonzalez;Alex K. Vaskov;Paul S. Cederna;Cynthia A. Chestek;Deanna H. Gates","doi":"10.1109/TMRB.2024.3504001","DOIUrl":null,"url":null,"abstract":"Individuals who use upper limb prostheses receive limited feedback from their devices. Researchers have attempted to elicit sensation through direct stimulation of peripheral nerves or through stimulation of reinnervated skin or muscle. Previous research found that electrical stimulation of Regenerative Peripheral Nerve Interfaces (RPNIs) elicited sensations that were referred to the phantom hand. The purpose of this study was to determine if this sensation could be used to improve performance of a functional task. Two participants with upper limb loss completed the Box and Blocks Test in a virtual environment under four feedback conditions on a single day of testing. These conditions included no feedback, vibration triggered by object contact, and two conditions where RPNIs were electrically stimulated upon object contact. For the RPNI conditions, one was somatotopic, meaning the referred sensation and virtual sensor were collocated and the other was non-somatotopic, where the referred sensation and virtual sensor locations differed. Participants moved the most blocks when somatotopic feedback was provided. Both participants expressed a preference for the somatotopic sensation, noting that it made their movements feel more natural. Overall, this study demonstrates that RPNI-elicited sensation has the potential to improve functional performance.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"141-148"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759816/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Individuals who use upper limb prostheses receive limited feedback from their devices. Researchers have attempted to elicit sensation through direct stimulation of peripheral nerves or through stimulation of reinnervated skin or muscle. Previous research found that electrical stimulation of Regenerative Peripheral Nerve Interfaces (RPNIs) elicited sensations that were referred to the phantom hand. The purpose of this study was to determine if this sensation could be used to improve performance of a functional task. Two participants with upper limb loss completed the Box and Blocks Test in a virtual environment under four feedback conditions on a single day of testing. These conditions included no feedback, vibration triggered by object contact, and two conditions where RPNIs were electrically stimulated upon object contact. For the RPNI conditions, one was somatotopic, meaning the referred sensation and virtual sensor were collocated and the other was non-somatotopic, where the referred sensation and virtual sensor locations differed. Participants moved the most blocks when somatotopic feedback was provided. Both participants expressed a preference for the somatotopic sensation, noting that it made their movements feel more natural. Overall, this study demonstrates that RPNI-elicited sensation has the potential to improve functional performance.
评估再生外周神经接口(RPNIs)在虚拟环境中的功能任务中提供参考感觉的实用性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信