Assessing the Utility of Regenerative Peripheral Nerve Interfaces (RPNIs) in Providing Referred Sensations in a Functional Task in a Virtual Environment

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Jake Kanetis;Michael A. Gonzalez;Alex K. Vaskov;Paul S. Cederna;Cynthia A. Chestek;Deanna H. Gates
{"title":"Assessing the Utility of Regenerative Peripheral Nerve Interfaces (RPNIs) in Providing Referred Sensations in a Functional Task in a Virtual Environment","authors":"Jake Kanetis;Michael A. Gonzalez;Alex K. Vaskov;Paul S. Cederna;Cynthia A. Chestek;Deanna H. Gates","doi":"10.1109/TMRB.2024.3504001","DOIUrl":null,"url":null,"abstract":"Individuals who use upper limb prostheses receive limited feedback from their devices. Researchers have attempted to elicit sensation through direct stimulation of peripheral nerves or through stimulation of reinnervated skin or muscle. Previous research found that electrical stimulation of Regenerative Peripheral Nerve Interfaces (RPNIs) elicited sensations that were referred to the phantom hand. The purpose of this study was to determine if this sensation could be used to improve performance of a functional task. Two participants with upper limb loss completed the Box and Blocks Test in a virtual environment under four feedback conditions on a single day of testing. These conditions included no feedback, vibration triggered by object contact, and two conditions where RPNIs were electrically stimulated upon object contact. For the RPNI conditions, one was somatotopic, meaning the referred sensation and virtual sensor were collocated and the other was non-somatotopic, where the referred sensation and virtual sensor locations differed. Participants moved the most blocks when somatotopic feedback was provided. Both participants expressed a preference for the somatotopic sensation, noting that it made their movements feel more natural. Overall, this study demonstrates that RPNI-elicited sensation has the potential to improve functional performance.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"141-148"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759816/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Individuals who use upper limb prostheses receive limited feedback from their devices. Researchers have attempted to elicit sensation through direct stimulation of peripheral nerves or through stimulation of reinnervated skin or muscle. Previous research found that electrical stimulation of Regenerative Peripheral Nerve Interfaces (RPNIs) elicited sensations that were referred to the phantom hand. The purpose of this study was to determine if this sensation could be used to improve performance of a functional task. Two participants with upper limb loss completed the Box and Blocks Test in a virtual environment under four feedback conditions on a single day of testing. These conditions included no feedback, vibration triggered by object contact, and two conditions where RPNIs were electrically stimulated upon object contact. For the RPNI conditions, one was somatotopic, meaning the referred sensation and virtual sensor were collocated and the other was non-somatotopic, where the referred sensation and virtual sensor locations differed. Participants moved the most blocks when somatotopic feedback was provided. Both participants expressed a preference for the somatotopic sensation, noting that it made their movements feel more natural. Overall, this study demonstrates that RPNI-elicited sensation has the potential to improve functional performance.
评估再生外周神经接口(RPNIs)在虚拟环境中的功能任务中提供参考感觉的实用性
使用上肢假体的人从他们的设备得到的反馈有限。研究人员试图通过直接刺激周围神经或通过刺激再神经支配的皮肤或肌肉来引起感觉。先前的研究发现,电刺激再生周围神经界面(RPNIs)会引起与幻手有关的感觉。这项研究的目的是确定这种感觉是否可以用来提高功能性任务的表现。两名上肢丧失的参与者在一天的测试中,在四种反馈条件下,在虚拟环境中完成了盒子和积木测试。这些条件包括无反馈,由物体接触触发的振动,以及在物体接触时电刺激rpni的两种条件。对于RPNI条件,一种是体位,即参考感觉和虚拟传感器同时存在,另一种是非体位,其中参考感觉和虚拟传感器的位置不同。当提供躯体主题反馈时,参与者移动的积木最多。两名参与者都表达了对躯体感的偏好,并指出这让他们的动作感觉更自然。总的来说,这项研究表明,rpni引发的感觉有可能改善功能表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信