Song Ding , Lunhu Hu , Xing Pan , Dujun Zuo , Liuwang Sun
{"title":"Assessing human situation awareness reliability considering fatigue and mood using EEG data: A Bayesian neural network-Bayesian network approach","authors":"Song Ding , Lunhu Hu , Xing Pan , Dujun Zuo , Liuwang Sun","doi":"10.1016/j.ress.2025.110962","DOIUrl":null,"url":null,"abstract":"<div><div>Situation awareness (SA) assessment is the process of acquiring and maintaining SA, which serves as a crucial indicator of operator task performance and behavioral safety in human-machine interaction. SA reliability is the evaluation of how well SA is established, and it is also the goal of SA assessment. Nonetheless, current SA assessment models rarely consider the influence of human physiological states, such as fatigue and mood, and rely heavily on subjective data. To address these deficiencies, this paper proposes a SA assessment model based on a Bayesian Neural Network (BNN) and Bayesian Network (BN), with a focus on examining the impact of fatigue and mood on the SA reliability. Firstly, fatigue and mood state classification models are developed using EEG data based on a BNN, and the uncertainty is assessed. Secondly, a BN model for SA reliability evaluation is proposed, where the uncertainty of BNN outputs is used as the prior probability, and conditional probability tables are established based on experimental statistics. Finally, a SA experiment is conducted using a civil aviation scenario based on the SAGAT platform to validate the proposed model. This model overcomes the limitations of previous approaches by leveraging objective physiological data and experimental statistics to infer the influence of physiological states on the SA reliability.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"260 ","pages":"Article 110962"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025001656","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Situation awareness (SA) assessment is the process of acquiring and maintaining SA, which serves as a crucial indicator of operator task performance and behavioral safety in human-machine interaction. SA reliability is the evaluation of how well SA is established, and it is also the goal of SA assessment. Nonetheless, current SA assessment models rarely consider the influence of human physiological states, such as fatigue and mood, and rely heavily on subjective data. To address these deficiencies, this paper proposes a SA assessment model based on a Bayesian Neural Network (BNN) and Bayesian Network (BN), with a focus on examining the impact of fatigue and mood on the SA reliability. Firstly, fatigue and mood state classification models are developed using EEG data based on a BNN, and the uncertainty is assessed. Secondly, a BN model for SA reliability evaluation is proposed, where the uncertainty of BNN outputs is used as the prior probability, and conditional probability tables are established based on experimental statistics. Finally, a SA experiment is conducted using a civil aviation scenario based on the SAGAT platform to validate the proposed model. This model overcomes the limitations of previous approaches by leveraging objective physiological data and experimental statistics to infer the influence of physiological states on the SA reliability.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.