Linus C. Erhard, Christoph Otzen, Jochen Rohrer, Clemens Prescher, Karsten Albe
{"title":"Understanding phase transitions of α-quartz under dynamic compression conditions by machine-learning driven atomistic simulations","authors":"Linus C. Erhard, Christoph Otzen, Jochen Rohrer, Clemens Prescher, Karsten Albe","doi":"10.1038/s41524-025-01542-4","DOIUrl":null,"url":null,"abstract":"<p>Characteristic shock effects in quartz serve as a key indicator of historic impacts at geologic sites. Despite this geologic significance, atomistic details of structural transformations of quartz under high pressure and shock compression remain poorly understood. This ambiguity is evidenced by conflicting experimental observations of both amorphization and transitions to crystalline polymorphs. Utilizing a newly developed machine-learning interatomic potential, we examine the response of <i>α</i>-quartz to shock compression with a peak pressure of 56 GPa over nanosecond timescales. We observe initial amorphization of quartz before crystallization into a d-NiAs-structured silica phase with disorder on the silicon sublattice, accompanied by the formation of domains with partial order of silicon. Investigating a variety of strain conditions of quartz enables us to identify non-hydrostatic stress and strain states that allow for direct diffusionless transformation to rosiaite-structured silica.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"34 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01542-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Characteristic shock effects in quartz serve as a key indicator of historic impacts at geologic sites. Despite this geologic significance, atomistic details of structural transformations of quartz under high pressure and shock compression remain poorly understood. This ambiguity is evidenced by conflicting experimental observations of both amorphization and transitions to crystalline polymorphs. Utilizing a newly developed machine-learning interatomic potential, we examine the response of α-quartz to shock compression with a peak pressure of 56 GPa over nanosecond timescales. We observe initial amorphization of quartz before crystallization into a d-NiAs-structured silica phase with disorder on the silicon sublattice, accompanied by the formation of domains with partial order of silicon. Investigating a variety of strain conditions of quartz enables us to identify non-hydrostatic stress and strain states that allow for direct diffusionless transformation to rosiaite-structured silica.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.