Xiaochen Zhang, Dong Li, Xuxu Yang, Lei Wang, Guo Li, Tuck-Whye Wong, Tiefeng Li, Wei Yang, Zisheng Luo
{"title":"Hydro-locking in hydrogel for extreme temperature tolerance.","authors":"Xiaochen Zhang, Dong Li, Xuxu Yang, Lei Wang, Guo Li, Tuck-Whye Wong, Tiefeng Li, Wei Yang, Zisheng Luo","doi":"10.1126/science.adq2711","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels consist of cross-linked polymers that are highly swollen with water. Water evaporation or freezing during temperature changes may lead to stiff and brittle hydrogels. We introduce a strategy called \"hydro-locking,\" which involves immobilizing the water molecules within the polymer network of the hydrogel. This is accomplished by establishing robust connections between water molecules and the polymer by using sulfuric acid. A sacrificial network is introduced to shield the prime polymer network from collapsing. Under the hydro-locking mode, an alginate-polyacrylamide double-network hydrogel remains soft and stretchable within a temperature range that spans from -115° to 143°C. The strategy works with a range of hydrogels and solutions and may enable the preservation and observation of materials or even living organisms at extreme temperatures.</p>","PeriodicalId":21678,"journal":{"name":"Science","volume":"387 6737","pages":"967-973"},"PeriodicalIF":45.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/science.adq2711","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogels consist of cross-linked polymers that are highly swollen with water. Water evaporation or freezing during temperature changes may lead to stiff and brittle hydrogels. We introduce a strategy called "hydro-locking," which involves immobilizing the water molecules within the polymer network of the hydrogel. This is accomplished by establishing robust connections between water molecules and the polymer by using sulfuric acid. A sacrificial network is introduced to shield the prime polymer network from collapsing. Under the hydro-locking mode, an alginate-polyacrylamide double-network hydrogel remains soft and stretchable within a temperature range that spans from -115° to 143°C. The strategy works with a range of hydrogels and solutions and may enable the preservation and observation of materials or even living organisms at extreme temperatures.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.