Ya-Ting Wang, Hong Wu, Ji-Jun Wu, Yuan-Shan Yu, Jing Wen, Bo Zou, Lu Li, Jian Peng, Li-Na Cheng, Zhi-Bin Bu, Yu-Juan Xu, Teng-Gen Hu
{"title":"The hypoglycemic effect of mulberry (<i>Morus atropurpurea</i>) fruit lacking fructose and glucose by regulation of the gut microbiota.","authors":"Ya-Ting Wang, Hong Wu, Ji-Jun Wu, Yuan-Shan Yu, Jing Wen, Bo Zou, Lu Li, Jian Peng, Li-Na Cheng, Zhi-Bin Bu, Yu-Juan Xu, Teng-Gen Hu","doi":"10.1039/d4fo02781g","DOIUrl":null,"url":null,"abstract":"<p><p>Mulberries are known to be rich in hypoglycemic active substances such as anthocyanins and dietary fiber, which primarily aid in regulating gut microbiota. However, their high sugar content, such as fructose, hinders their application in hypoglycemic functional foods. This research utilized microbial fermentation technology to remove the fructose and glucose in mulberries (FM), subsequently evaluating their hypoglycemic properties and balancing gut microbiota. Results indicated that administering varying doses of FM to type 2 diabetic mice for five weeks notably decreased blood sugar and insulin levels, improved dyslipidemia and insulin resistance, enhanced antioxidant capacity, repaired organ damage, and regulated hypoglycemic activity by influencing mRNA expression of key signaling factors in the PI3K/Akt and AMPK pathways. Analysis of the intestinal microbiota composition revealed that FM can modulate specific bacterial populations, increasing beneficial bacteria like <i>Lactobacillus</i>, <i>Bifidobacterium</i> and <i>Akkermansia</i> while inhibiting harmful bacteria like <i>Escherichia</i>-<i>Shigella</i> and <i>Helicobacter</i>. This restoration of the intestinal microecological balance helped regulate host sugar metabolism homeostasis and affect the secretion of short chain fatty acid (SCFA) synthase in the gut microbiota to increase the production of SCFAs. These findings offer significant support for the potential use of FM in the treatment of diabetes.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo02781g","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mulberries are known to be rich in hypoglycemic active substances such as anthocyanins and dietary fiber, which primarily aid in regulating gut microbiota. However, their high sugar content, such as fructose, hinders their application in hypoglycemic functional foods. This research utilized microbial fermentation technology to remove the fructose and glucose in mulberries (FM), subsequently evaluating their hypoglycemic properties and balancing gut microbiota. Results indicated that administering varying doses of FM to type 2 diabetic mice for five weeks notably decreased blood sugar and insulin levels, improved dyslipidemia and insulin resistance, enhanced antioxidant capacity, repaired organ damage, and regulated hypoglycemic activity by influencing mRNA expression of key signaling factors in the PI3K/Akt and AMPK pathways. Analysis of the intestinal microbiota composition revealed that FM can modulate specific bacterial populations, increasing beneficial bacteria like Lactobacillus, Bifidobacterium and Akkermansia while inhibiting harmful bacteria like Escherichia-Shigella and Helicobacter. This restoration of the intestinal microecological balance helped regulate host sugar metabolism homeostasis and affect the secretion of short chain fatty acid (SCFA) synthase in the gut microbiota to increase the production of SCFAs. These findings offer significant support for the potential use of FM in the treatment of diabetes.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.