{"title":"Irradiation alters the structure and reduces the sensitization of sesame proteins in the liquid state.","authors":"Xintong Yang, Tian Yu, Yunpeng Shen, Hui Liu, Youdou Cheng, Ruoyan Dai, Dongxia Yan, Jinyan Gao, Hongbing Chen, Yong Wu","doi":"10.1039/d4fo05355a","DOIUrl":null,"url":null,"abstract":"<p><p>Irradiation is extensively utilized in food processing as an effective and convenient method. At present, numerous studies have investigated the potential of irradiation to reduce food allergenicity. The objective of this study was to investigate the effects of irradiation treatment on the structure and allergenicity of liquid and solid sesame proteins. Sesame protein extracts and lyophilized powders were irradiated at doses of 0, 2.5, 5, 7.5, and 10 kGy, respectively. The effects of irradiation on sesame proteins were investigated by CD spectroscopy, fluorescence spectroscopy, indirect competitive ELISA, western blot and degranulation experiments on KU812 cells. The experimental results demonstrated that irradiation had a more pronounced effect on liquid sesame proteins. Irradiation altered the secondary structure and increased the surface hydrophobicity, with the α-helix content decreasing from 14.27% to 13.53% and the β-sheet content increasing from 33.91% to 39.53%. Additionally, protein aggregation resulted in a reduction of free sulfhydryl groups. Following irradiation, the IC50 value obtained by indirect competitive ELISA increased from 0.695 μg mL<sup>-1</sup> to 18.546 μg mL<sup>-1</sup>, while the release of cellular β-Hex and IL-6 was reduced, indicating that irradiation diminished the IgE binding capacity of liquid sesame proteins and their ability to induce cell degranulation. Western blotting results corroborated the findings from the ELISA assay. In conclusion, irradiation modifies the structure and reduces the potential allergenicity of liquid sesame proteins.</p>","PeriodicalId":77,"journal":{"name":"Food & Function","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food & Function","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1039/d4fo05355a","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Irradiation is extensively utilized in food processing as an effective and convenient method. At present, numerous studies have investigated the potential of irradiation to reduce food allergenicity. The objective of this study was to investigate the effects of irradiation treatment on the structure and allergenicity of liquid and solid sesame proteins. Sesame protein extracts and lyophilized powders were irradiated at doses of 0, 2.5, 5, 7.5, and 10 kGy, respectively. The effects of irradiation on sesame proteins were investigated by CD spectroscopy, fluorescence spectroscopy, indirect competitive ELISA, western blot and degranulation experiments on KU812 cells. The experimental results demonstrated that irradiation had a more pronounced effect on liquid sesame proteins. Irradiation altered the secondary structure and increased the surface hydrophobicity, with the α-helix content decreasing from 14.27% to 13.53% and the β-sheet content increasing from 33.91% to 39.53%. Additionally, protein aggregation resulted in a reduction of free sulfhydryl groups. Following irradiation, the IC50 value obtained by indirect competitive ELISA increased from 0.695 μg mL-1 to 18.546 μg mL-1, while the release of cellular β-Hex and IL-6 was reduced, indicating that irradiation diminished the IgE binding capacity of liquid sesame proteins and their ability to induce cell degranulation. Western blotting results corroborated the findings from the ELISA assay. In conclusion, irradiation modifies the structure and reduces the potential allergenicity of liquid sesame proteins.
期刊介绍:
Food & Function provides a unique venue for physicists, chemists, biochemists, nutritionists and other food scientists to publish work at the interface of the chemistry, physics and biology of food. The journal focuses on food and the functions of food in relation to health.