Preliminary Evaluation of a Soft Wearable Robot for Shoulder Movement Assistance

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Lorenzo Campioni;Gianluca Dimonte;Giorgia Sciarrone;Gabriele Righi;Conor Walsh;Marta Gandolla;Giulio Del Popolo;Silvestro Micera;Tommaso Proietti
{"title":"Preliminary Evaluation of a Soft Wearable Robot for Shoulder Movement Assistance","authors":"Lorenzo Campioni;Gianluca Dimonte;Giorgia Sciarrone;Gabriele Righi;Conor Walsh;Marta Gandolla;Giulio Del Popolo;Silvestro Micera;Tommaso Proietti","doi":"10.1109/TMRB.2025.3527708","DOIUrl":null,"url":null,"abstract":"Spinal cord injuries (SCI) often lead to upper limb impairment, necessitating innovative solutions for daily assistance beyond traditional rigid robotics due to their impractical weight and size. Despite still preliminary, soft wearables are arising as a possible solution to fill this gap. Here, we demonstrated an enhanced version of a soft inflatable robot that assists the shoulder against gravity, previously tested with different neurological conditions. Noteworthy improvements include a single-layer actuator, simplifying manufacturing, a built-in bending angle and a nylon hammock, for better armpit conformity. We characterized the actuator (approximately <inline-formula> <tex-math>$8 Nm$ </tex-math></inline-formula> at 90° at <inline-formula> <tex-math>$70 kPa$ </tex-math></inline-formula>) and demonstrated its good transparency, both from a kinematic and a muscular standpoint. Then, on 11 healthy individuals, we showed reductions in shoulder muscle activity (both at the anterior and middle deltoid) while performing a lift and hold task, ranging from 16% to almost 60% of the maximum voluntary contraction. More importantly, we confirmed these effects on two SCI individuals SCI, at two different stages of recovery. While preliminary, considering the limited exploration of soft wearable robots for the shoulder in SCI cases, this is a significant advancement playing an important role in the development of future soft technology for SCI assistance.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"315-324"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10835215","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10835215/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injuries (SCI) often lead to upper limb impairment, necessitating innovative solutions for daily assistance beyond traditional rigid robotics due to their impractical weight and size. Despite still preliminary, soft wearables are arising as a possible solution to fill this gap. Here, we demonstrated an enhanced version of a soft inflatable robot that assists the shoulder against gravity, previously tested with different neurological conditions. Noteworthy improvements include a single-layer actuator, simplifying manufacturing, a built-in bending angle and a nylon hammock, for better armpit conformity. We characterized the actuator (approximately $8 Nm$ at 90° at $70 kPa$ ) and demonstrated its good transparency, both from a kinematic and a muscular standpoint. Then, on 11 healthy individuals, we showed reductions in shoulder muscle activity (both at the anterior and middle deltoid) while performing a lift and hold task, ranging from 16% to almost 60% of the maximum voluntary contraction. More importantly, we confirmed these effects on two SCI individuals SCI, at two different stages of recovery. While preliminary, considering the limited exploration of soft wearable robots for the shoulder in SCI cases, this is a significant advancement playing an important role in the development of future soft technology for SCI assistance.
柔性可穿戴肩部运动辅助机器人的初步评价
脊髓损伤(SCI)经常导致上肢损伤,由于其不切实际的重量和尺寸,传统的刚性机器人需要创新的日常辅助解决方案。尽管还处于初步阶段,但软可穿戴设备正在成为填补这一空白的可能解决方案。在这里,我们展示了一个增强版的软充气机器人,它可以帮助肩膀抵抗重力,之前在不同的神经系统疾病中进行了测试。值得注意的改进包括单层驱动器,简化制造,内置弯曲角度和尼龙吊床,以更好地符合腋窝。我们对致动器进行了表征(在90°和70 kPa下约8 Nm),并从运动学和肌肉的角度证明了其良好的透明度。然后,在11个健康个体中,我们发现在执行举举和保持任务时,肩部肌肉活动(包括前三角肌和中三角肌)减少,从最大自愿收缩的16%到近60%不等。更重要的是,我们在两个不同恢复阶段的SCI个体中证实了这些影响。虽然是初步的,但考虑到在SCI病例中用于肩部的软性可穿戴机器人的探索有限,这是一项重大进展,对未来SCI辅助软技术的发展具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信