Combined traditional Chinese medicine and probiotics (TCMP) alleviates lipid accumulation and improves metabolism in high-fat diet mice via the microbiota-gut-liver axis

IF 7 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Xiayu Liu , Boyuan Guan , Ziyi Hu , Xiaoyan Hu , Shuaixing Liu , Ke Yang , Liping Zhou , Longli Yu , Jinyan Yang , Shiguo Chen , Qihe Chen , Donghong Liu , Guanchen Liu , Haibo Pan
{"title":"Combined traditional Chinese medicine and probiotics (TCMP) alleviates lipid accumulation and improves metabolism in high-fat diet mice via the microbiota-gut-liver axis","authors":"Xiayu Liu ,&nbsp;Boyuan Guan ,&nbsp;Ziyi Hu ,&nbsp;Xiaoyan Hu ,&nbsp;Shuaixing Liu ,&nbsp;Ke Yang ,&nbsp;Liping Zhou ,&nbsp;Longli Yu ,&nbsp;Jinyan Yang ,&nbsp;Shiguo Chen ,&nbsp;Qihe Chen ,&nbsp;Donghong Liu ,&nbsp;Guanchen Liu ,&nbsp;Haibo Pan","doi":"10.1016/j.foodres.2025.116064","DOIUrl":null,"url":null,"abstract":"<div><div>Lipid accumulation and metabolic disorders caused by a high-fat diet (HFD) pose significant threats to human health, and place a substantial burden on individuals and society. In this study, a novel combination comprising three traditional Chinese herbs (lotus leaf, hawthorn, and leaf of Chinese holly) and a probiotic (<em>Bifidobacterium lactis</em> BPL-1) (TCMP) was prepared. Then, its effects on growth performance, fat accumulation, hepatic function and gut microbiota in mice fed a high-fat diet were investigated. According to the results, TCMP significantly reduced adipose tissue fat accumulation, improved hepatic lipid metabolism, and ameliorated glucose homeostasis in HFD-fed mice. Notably, TCMP not only improved the abundance and diversity of gut microbiota and increased the content of beneficial intestinal bacteria related to lipid metabolism (especially <em>Bifidobacterium animalis</em>), but also increased the production of short-chain fatty acids, including2-methylbutyrate, isovaleric acid and isobutyric acid. Additionally, multi-omics (transcriptome and metabolome) analysis revealed that TCMP significantly inhibited the expression of genes involved in the lipid biosynthesis process and modulated the purine and glycerophospholipid metabolism caused by a high-fat diet, thereby achieving the purpose of reducing fat accumulation and regulating lipid metabolism. Taken together, our finding demonstrates the potential of TCMP as a promising therapeutic candidate for combatting obesity and lipid metabolism disorders induced by a high-fat diet.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"207 ","pages":"Article 116064"},"PeriodicalIF":7.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996925004016","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid accumulation and metabolic disorders caused by a high-fat diet (HFD) pose significant threats to human health, and place a substantial burden on individuals and society. In this study, a novel combination comprising three traditional Chinese herbs (lotus leaf, hawthorn, and leaf of Chinese holly) and a probiotic (Bifidobacterium lactis BPL-1) (TCMP) was prepared. Then, its effects on growth performance, fat accumulation, hepatic function and gut microbiota in mice fed a high-fat diet were investigated. According to the results, TCMP significantly reduced adipose tissue fat accumulation, improved hepatic lipid metabolism, and ameliorated glucose homeostasis in HFD-fed mice. Notably, TCMP not only improved the abundance and diversity of gut microbiota and increased the content of beneficial intestinal bacteria related to lipid metabolism (especially Bifidobacterium animalis), but also increased the production of short-chain fatty acids, including2-methylbutyrate, isovaleric acid and isobutyric acid. Additionally, multi-omics (transcriptome and metabolome) analysis revealed that TCMP significantly inhibited the expression of genes involved in the lipid biosynthesis process and modulated the purine and glycerophospholipid metabolism caused by a high-fat diet, thereby achieving the purpose of reducing fat accumulation and regulating lipid metabolism. Taken together, our finding demonstrates the potential of TCMP as a promising therapeutic candidate for combatting obesity and lipid metabolism disorders induced by a high-fat diet.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Research International
Food Research International 工程技术-食品科技
CiteScore
12.50
自引率
7.40%
发文量
1183
审稿时长
79 days
期刊介绍: Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信