Lukáš Kývala, Pablo Montero de Hijes, Christoph Dellago
{"title":"Unsupervised identification of crystal defects from atomistic potential descriptors","authors":"Lukáš Kývala, Pablo Montero de Hijes, Christoph Dellago","doi":"10.1038/s41524-025-01544-2","DOIUrl":null,"url":null,"abstract":"<p>Identifying crystal defects is vital for unraveling the origins of many physical phenomena. Traditionally used order parameters are system-dependent and can be computationally expensive to calculate for long molecular dynamics simulations. Unsupervised algorithms offer an alternative independent of the studied system and can utilize precalculated atomistic potential descriptors from molecular dynamics simulations. We compare the performance of three such algorithms (PCA, UMAP, and PaCMAP) on silicon and water systems. Initially, we evaluate the algorithms for recognizing phases, including crystal polymorphs and the melt, followed by an extension of our analysis to identify interstitials, vacancies, and interfaces. While PCA is found unsuitable for effective classification, it has been shown to be a suitable initialization for UMAP and PaCMAP. Both UMAP and PaCMAP show promising results overall, with PaCMAP proving more robust in classification, except in cases of significant class imbalance, where UMAP performs better. Notably, both algorithms successfully identify nuclei in supercooled water, demonstrating their applicability to ice nucleation in water.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01544-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying crystal defects is vital for unraveling the origins of many physical phenomena. Traditionally used order parameters are system-dependent and can be computationally expensive to calculate for long molecular dynamics simulations. Unsupervised algorithms offer an alternative independent of the studied system and can utilize precalculated atomistic potential descriptors from molecular dynamics simulations. We compare the performance of three such algorithms (PCA, UMAP, and PaCMAP) on silicon and water systems. Initially, we evaluate the algorithms for recognizing phases, including crystal polymorphs and the melt, followed by an extension of our analysis to identify interstitials, vacancies, and interfaces. While PCA is found unsuitable for effective classification, it has been shown to be a suitable initialization for UMAP and PaCMAP. Both UMAP and PaCMAP show promising results overall, with PaCMAP proving more robust in classification, except in cases of significant class imbalance, where UMAP performs better. Notably, both algorithms successfully identify nuclei in supercooled water, demonstrating their applicability to ice nucleation in water.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.