Pattern mining-based evolutionary multi-objective algorithm for beam angle optimization in intensity-modulated radiotherapy

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ruifen Cao, Wei Chen, Tielu Zhang, Langchun Si, Xi Pei, Xingyi Zhang
{"title":"Pattern mining-based evolutionary multi-objective algorithm for beam angle optimization in intensity-modulated radiotherapy","authors":"Ruifen Cao, Wei Chen, Tielu Zhang, Langchun Si, Xi Pei, Xingyi Zhang","doi":"10.1007/s40747-025-01809-9","DOIUrl":null,"url":null,"abstract":"<p>Evolutionary multi-objective algorithms have been applied to beam angle optimization (called BAO) for generating diverse trade-off radiotherapy treatment plans. However, their performance is not so effective due to the ignorance of using the specific clinical knowledge that can be obtain intuitively by clinical physicist. To address this issue, we suggest a pattern mining based evolutionary multi-objective algorithm called PM-EMA, in which two strategies for using the knowledge are proposed to accelerate the speed of population convergence. Firstly, to discover the potential beam angle distribution and discard the worse angles, the pattern mining strategy is used to detect the maximum and minimum sets of beam angles in non-dominated solutions of the population and utilize them to generate offspring to enhance the convergence. Moreover, to improve the quality of initial solutions, a tailored population initialization strategy is proposed by using the score of beam angles defined by this study. The experimental results on six clinical cancer cases demonstrate the superior performance of the proposed algorithm over six representative algorithms.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"52 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01809-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Evolutionary multi-objective algorithms have been applied to beam angle optimization (called BAO) for generating diverse trade-off radiotherapy treatment plans. However, their performance is not so effective due to the ignorance of using the specific clinical knowledge that can be obtain intuitively by clinical physicist. To address this issue, we suggest a pattern mining based evolutionary multi-objective algorithm called PM-EMA, in which two strategies for using the knowledge are proposed to accelerate the speed of population convergence. Firstly, to discover the potential beam angle distribution and discard the worse angles, the pattern mining strategy is used to detect the maximum and minimum sets of beam angles in non-dominated solutions of the population and utilize them to generate offspring to enhance the convergence. Moreover, to improve the quality of initial solutions, a tailored population initialization strategy is proposed by using the score of beam angles defined by this study. The experimental results on six clinical cancer cases demonstrate the superior performance of the proposed algorithm over six representative algorithms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信