Xuefeng Bai, Song He, Yi Li, Yabo Xie, Xin Zhang, Wenli Du, Jian-Rong Li
{"title":"Construction of a knowledge graph for framework material enabled by large language models and its application","authors":"Xuefeng Bai, Song He, Yi Li, Yabo Xie, Xin Zhang, Wenli Du, Jian-Rong Li","doi":"10.1038/s41524-025-01540-6","DOIUrl":null,"url":null,"abstract":"<p>Framework materials (FMs) have been extensively investigated with a plethora of literature documenting their unique properties and potential applications. Despite this, a comprehensive knowledge graph for this emerging field has not yet been constructed. In this study, by utilizing the natural language processing capabilities of large language models (LLMs), we have established a comprehensive knowledge graph (KG-FM). It covers synthesis, properties, applications, and other aspects of FMs including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs). The knowledge graph was constructed through the analysis of over 100,000 articles, resulting in 2.53 million nodes and 4.01 million relationships. Subsequently, its application has been explored for enhancing data retrieval, mining, and the development of sophisticated question-answering systems. Especially when integrating the KGs with LLMs, resulted Qwen2-KG not only achieves a higher accuracy rate of 91.67% in question-answering than existing models but also provides precise information sources.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"31 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01540-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Framework materials (FMs) have been extensively investigated with a plethora of literature documenting their unique properties and potential applications. Despite this, a comprehensive knowledge graph for this emerging field has not yet been constructed. In this study, by utilizing the natural language processing capabilities of large language models (LLMs), we have established a comprehensive knowledge graph (KG-FM). It covers synthesis, properties, applications, and other aspects of FMs including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and hydrogen-bonded organic frameworks (HOFs). The knowledge graph was constructed through the analysis of over 100,000 articles, resulting in 2.53 million nodes and 4.01 million relationships. Subsequently, its application has been explored for enhancing data retrieval, mining, and the development of sophisticated question-answering systems. Especially when integrating the KGs with LLMs, resulted Qwen2-KG not only achieves a higher accuracy rate of 91.67% in question-answering than existing models but also provides precise information sources.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.