Demonstration and offset augmented meta reinforcement learning with sparse rewards

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haorui Li, Jiaqi Liang, Xiaoxuan Wang, Chengzhi Jiang, Linjing Li, Daniel Zeng
{"title":"Demonstration and offset augmented meta reinforcement learning with sparse rewards","authors":"Haorui Li, Jiaqi Liang, Xiaoxuan Wang, Chengzhi Jiang, Linjing Li, Daniel Zeng","doi":"10.1007/s40747-025-01785-0","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces DOAMRL, a novel meta-reinforcement learning (meta-RL) method that extends the Model-Agnostic Meta-Learning (MAML) framework. The method addresses a key limitation of existing meta-RL approaches, which struggle to effectively use suboptimal demonstrations to guide training in sparse reward environments. DOAMRL effectively combines reinforcement learning (RL) and imitation learning (IL) within the inner loop of the MAML framework, with dynamically adjusted weights applied to the IL component. This enables the method to leverage the exploration strengths of RL and the efficiency benefits of IL at different stages of training. Additionally, DOAMRL introduces a meta-learned parameter offset, which enhances targeted exploration in sparse reward settings, helping to guide the meta-policy toward regions with non-zero rewards. To further mitigate the impact of suboptimal demonstration data on meta-training, we propose a novel demonstration data enhancement module that iteratively improves the quality of the demonstrations. We provide a comprehensive analysis of the proposed method, justifying its design choices. A comprehensive comparison with existing methods in various stages (including training and adaptation), using both optimal and suboptimal demonstrations, along with results from ablation and sensitivity analysis, demonstrates that DOAMRL outperforms existing approaches in performance, applicability, and robustness.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"71 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01785-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces DOAMRL, a novel meta-reinforcement learning (meta-RL) method that extends the Model-Agnostic Meta-Learning (MAML) framework. The method addresses a key limitation of existing meta-RL approaches, which struggle to effectively use suboptimal demonstrations to guide training in sparse reward environments. DOAMRL effectively combines reinforcement learning (RL) and imitation learning (IL) within the inner loop of the MAML framework, with dynamically adjusted weights applied to the IL component. This enables the method to leverage the exploration strengths of RL and the efficiency benefits of IL at different stages of training. Additionally, DOAMRL introduces a meta-learned parameter offset, which enhances targeted exploration in sparse reward settings, helping to guide the meta-policy toward regions with non-zero rewards. To further mitigate the impact of suboptimal demonstration data on meta-training, we propose a novel demonstration data enhancement module that iteratively improves the quality of the demonstrations. We provide a comprehensive analysis of the proposed method, justifying its design choices. A comprehensive comparison with existing methods in various stages (including training and adaptation), using both optimal and suboptimal demonstrations, along with results from ablation and sensitivity analysis, demonstrates that DOAMRL outperforms existing approaches in performance, applicability, and robustness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信