Trust-aware privacy-preserving QoS prediction with graph neural collaborative filtering for internet of things services

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weiwei Wang, Wenping Ma, Kun Yan
{"title":"Trust-aware privacy-preserving QoS prediction with graph neural collaborative filtering for internet of things services","authors":"Weiwei Wang, Wenping Ma, Kun Yan","doi":"10.1007/s40747-025-01824-w","DOIUrl":null,"url":null,"abstract":"<p>The booming development of the Internet of Things (IoT) has led to an explosion of web services, making it more inconvenient for users to choose satisfactory services among numerous options. Therefore, ensuring quality of service (QoS) in a service-oriented IoT environment is crucial, highlighting QoS prediction as a prominent research focus. However, issues related to information credibility, user data privacy, and prediction accuracy in QoS prediction for IoT services have become significant challenges in current research. To tackle these issues, we propose TPP-GNCF, a trust-aware privacy-preserving QoS prediction framework that integrates graph neural networks with collaborative filtering methods. In TPP-GNCF, we filter out untrustworthy QoS values provided by users for certain services to select credible QoS values. Then, a message-passing graph neural network (MP-GNN) is utilized to effectively capture information transmission and relationships in the graph structure, while differential privacy is used to protect user node information. In addition, we use a similarity calculation method based on weight function in collaborative filtering to mine implicit embedded features that graph neural networks cannot directly utilize. Finally, the final missing QoS values are achieved by fusing graph neural predicted QoS and feature collaborative filtering predicted QoS. We conducted extensive experiments on the well-known WS-DREAM dataset. The results demonstrate that the TPP-GNCF framework not only surpasses existing schemes in performance but also effectively addresses issues of information credibility and user privacy.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"22 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01824-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The booming development of the Internet of Things (IoT) has led to an explosion of web services, making it more inconvenient for users to choose satisfactory services among numerous options. Therefore, ensuring quality of service (QoS) in a service-oriented IoT environment is crucial, highlighting QoS prediction as a prominent research focus. However, issues related to information credibility, user data privacy, and prediction accuracy in QoS prediction for IoT services have become significant challenges in current research. To tackle these issues, we propose TPP-GNCF, a trust-aware privacy-preserving QoS prediction framework that integrates graph neural networks with collaborative filtering methods. In TPP-GNCF, we filter out untrustworthy QoS values provided by users for certain services to select credible QoS values. Then, a message-passing graph neural network (MP-GNN) is utilized to effectively capture information transmission and relationships in the graph structure, while differential privacy is used to protect user node information. In addition, we use a similarity calculation method based on weight function in collaborative filtering to mine implicit embedded features that graph neural networks cannot directly utilize. Finally, the final missing QoS values are achieved by fusing graph neural predicted QoS and feature collaborative filtering predicted QoS. We conducted extensive experiments on the well-known WS-DREAM dataset. The results demonstrate that the TPP-GNCF framework not only surpasses existing schemes in performance but also effectively addresses issues of information credibility and user privacy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信