Exact particle flow Daum-Huang filters for mobile robot localization in occupancy grid maps

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Domonkos Csuzdi, Tamás Bécsi, Péter Gáspár, Olivér Törő
{"title":"Exact particle flow Daum-Huang filters for mobile robot localization in occupancy grid maps","authors":"Domonkos Csuzdi, Tamás Bécsi, Péter Gáspár, Olivér Törő","doi":"10.1007/s40747-025-01810-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present a novel localization algorithm for mobile robots navigating in complex planar environments, a critical capability for various real-world applications such as autonomous driving, robotic assistance, and industrial automation. Although traditional methods such as particle filters and extended Kalman filters have been widely used, there is still room for assessing the capabilities of modern filtering techniques for this task. Building on a recent localization method that employs a chamfer distance-based observation model, derived from an implicit measurement equation, we explore its potential further by incorporating exact particle flow Daum–Huang filters to achieve superior accuracy. Recent advancements have spotlighted Daum–Huang filters as formidable contenders, outshining both the extended Kalman filters and traditional particle filters in various scenarios. We introduce two new Daum–Huang-based localization algorithms and assess their tracking performance through comprehensive simulations and real-world trials. Our algorithms are benchmarked against various methods, including the widely acclaimed Adaptive Monte–Carlo Localization algorithm. Overall, our algorithm demonstrates superior performance compared to the baseline models in simulations and exhibits competitive performance in the evaluated real-world application.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"28 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01810-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a novel localization algorithm for mobile robots navigating in complex planar environments, a critical capability for various real-world applications such as autonomous driving, robotic assistance, and industrial automation. Although traditional methods such as particle filters and extended Kalman filters have been widely used, there is still room for assessing the capabilities of modern filtering techniques for this task. Building on a recent localization method that employs a chamfer distance-based observation model, derived from an implicit measurement equation, we explore its potential further by incorporating exact particle flow Daum–Huang filters to achieve superior accuracy. Recent advancements have spotlighted Daum–Huang filters as formidable contenders, outshining both the extended Kalman filters and traditional particle filters in various scenarios. We introduce two new Daum–Huang-based localization algorithms and assess their tracking performance through comprehensive simulations and real-world trials. Our algorithms are benchmarked against various methods, including the widely acclaimed Adaptive Monte–Carlo Localization algorithm. Overall, our algorithm demonstrates superior performance compared to the baseline models in simulations and exhibits competitive performance in the evaluated real-world application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信